{"title":"CLOC、SILC和AES-OTR的低域硬件实现","authors":"S. Banik, A. Bogdanov, Kazuhiko Minematsu","doi":"10.1109/HST.2016.7495559","DOIUrl":null,"url":null,"abstract":"The most compact implementation of the AES-128 algorithm was the 8-bit serial circuit proposed in the work of Moradi et. al. (Eurocrypt 2011). The circuit has an 8-bit datapath and occupies area equivalent to around 2400 GE. Since many authenticated encryption modes use the AES-128 algorithm as the underlying block cipher, we investigate if they can be implemented in a compact fashion using the 8-bit serialized AES circuit. In this context we investigate three authenticated encryption modes CLOC, SILC and AES-OTR. Using the standard cell library of the STM 90nm process, we implemented CLOC and SILC with around 3110 GE whereas AES-OTR was implemented with around 4720 GE.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Low-area hardware implementations of CLOC, SILC and AES-OTR\",\"authors\":\"S. Banik, A. Bogdanov, Kazuhiko Minematsu\",\"doi\":\"10.1109/HST.2016.7495559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most compact implementation of the AES-128 algorithm was the 8-bit serial circuit proposed in the work of Moradi et. al. (Eurocrypt 2011). The circuit has an 8-bit datapath and occupies area equivalent to around 2400 GE. Since many authenticated encryption modes use the AES-128 algorithm as the underlying block cipher, we investigate if they can be implemented in a compact fashion using the 8-bit serialized AES circuit. In this context we investigate three authenticated encryption modes CLOC, SILC and AES-OTR. Using the standard cell library of the STM 90nm process, we implemented CLOC and SILC with around 3110 GE whereas AES-OTR was implemented with around 4720 GE.\",\"PeriodicalId\":194799,\"journal\":{\"name\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2016.7495559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-area hardware implementations of CLOC, SILC and AES-OTR
The most compact implementation of the AES-128 algorithm was the 8-bit serial circuit proposed in the work of Moradi et. al. (Eurocrypt 2011). The circuit has an 8-bit datapath and occupies area equivalent to around 2400 GE. Since many authenticated encryption modes use the AES-128 algorithm as the underlying block cipher, we investigate if they can be implemented in a compact fashion using the 8-bit serialized AES circuit. In this context we investigate three authenticated encryption modes CLOC, SILC and AES-OTR. Using the standard cell library of the STM 90nm process, we implemented CLOC and SILC with around 3110 GE whereas AES-OTR was implemented with around 4720 GE.