利用信息测量的新型射频频谱表征

John J. Kelly, Daniel L. Stevens
{"title":"利用信息测量的新型射频频谱表征","authors":"John J. Kelly, Daniel L. Stevens","doi":"10.1109/MILCOM52596.2021.9653019","DOIUrl":null,"url":null,"abstract":"As the number of radio frequency (RF) systems in use continues to increase, the need to monitor and securely share limited spectrum continues to correspondingly grow. Tracking and analyzing spectrum usage over time is pivotal to secure dynamic spectrum sharing. This paper presents a novel unsupervised, information-based approach to identifying and characterizing the complexity and quality of an RF signal's time-frequency (TF) characteristics. The proposed method draws on tools from information geometry and utilizes the set of correlation matrices. In particular, the informativeness is a recently developed measure of the homogeneity of a data set. The informativeness provides a two-parameter characterization of multi-dimensional data that can be used to assess TF grids for homogeneity. This intrinsic consistency can be used to assess the quality or complexity of recorded data at a single sensor, and to assess consistency between pairs of sensor network nodes.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel RF Spectrum Characterization Using Information Measures\",\"authors\":\"John J. Kelly, Daniel L. Stevens\",\"doi\":\"10.1109/MILCOM52596.2021.9653019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of radio frequency (RF) systems in use continues to increase, the need to monitor and securely share limited spectrum continues to correspondingly grow. Tracking and analyzing spectrum usage over time is pivotal to secure dynamic spectrum sharing. This paper presents a novel unsupervised, information-based approach to identifying and characterizing the complexity and quality of an RF signal's time-frequency (TF) characteristics. The proposed method draws on tools from information geometry and utilizes the set of correlation matrices. In particular, the informativeness is a recently developed measure of the homogeneity of a data set. The informativeness provides a two-parameter characterization of multi-dimensional data that can be used to assess TF grids for homogeneity. This intrinsic consistency can be used to assess the quality or complexity of recorded data at a single sensor, and to assess consistency between pairs of sensor network nodes.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9653019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着使用中的射频(RF)系统数量的不断增加,监控和安全地共享有限频谱的需求也相应增加。随着时间的推移跟踪和分析频谱使用情况对于确保动态频谱共享至关重要。本文提出了一种新的无监督、基于信息的方法来识别和表征射频信号时频(TF)特征的复杂性和质量。该方法利用了信息几何的工具,并利用了相关矩阵集。特别是,信息量是最近发展起来的数据集同质性的度量。信息量提供了多维数据的双参数表征,可用于评估TF网格的均匀性。这种内在一致性可用于评估单个传感器记录数据的质量或复杂性,以及评估传感器网络节点对之间的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel RF Spectrum Characterization Using Information Measures
As the number of radio frequency (RF) systems in use continues to increase, the need to monitor and securely share limited spectrum continues to correspondingly grow. Tracking and analyzing spectrum usage over time is pivotal to secure dynamic spectrum sharing. This paper presents a novel unsupervised, information-based approach to identifying and characterizing the complexity and quality of an RF signal's time-frequency (TF) characteristics. The proposed method draws on tools from information geometry and utilizes the set of correlation matrices. In particular, the informativeness is a recently developed measure of the homogeneity of a data set. The informativeness provides a two-parameter characterization of multi-dimensional data that can be used to assess TF grids for homogeneity. This intrinsic consistency can be used to assess the quality or complexity of recorded data at a single sensor, and to assess consistency between pairs of sensor network nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RF-based Network Inference: Theoretical Foundations Security Threats Analysis of the Unmanned Aerial Vehicle System Using Distributed Ledgers For Command and Control – Concepts and Challenges DerechoDDS: Strongly Consistent Data Distribution for Mission-Critical Applications CUE: A Standalone Testbed for 5G Experimentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1