跨语言事件检索的示例查询

Sheikh Muhammad Sarwar, J. Allan
{"title":"跨语言事件检索的示例查询","authors":"Sheikh Muhammad Sarwar, J. Allan","doi":"10.1145/3397271.3401283","DOIUrl":null,"url":null,"abstract":"We propose a Query by Example (QBE) setting for cross-lingual event retrieval. In this setting, a user describes a query event using example sentences in one language, and a retrieval system returns a ranked list of sentences that describe the query event, but from a corpus in a different language. One challenge in this setting is that a sentence may mention more than one event. Hence, matching the query sentence with document sentence results in a noisy matching. We propose a Semantic Role Labeling (SRL) based approach to identify event spans in sentences and use a state-of-the-art sentence matching model, Sentence BERT (SBERT) to match event spans in queries and documents without any supervision. To evaluate our approach we construct an event retrieval dataset from ACE which is an existing event detection dataset. Experimental results show that it is valuable to predict event spans in queries and documents and our proposed unsupervised approach achieves superior performance compared to Query Likelihood (QL), Relevance Model 3 (RM3) and SBERT.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Query by Example for Cross-Lingual Event Retrieval\",\"authors\":\"Sheikh Muhammad Sarwar, J. Allan\",\"doi\":\"10.1145/3397271.3401283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Query by Example (QBE) setting for cross-lingual event retrieval. In this setting, a user describes a query event using example sentences in one language, and a retrieval system returns a ranked list of sentences that describe the query event, but from a corpus in a different language. One challenge in this setting is that a sentence may mention more than one event. Hence, matching the query sentence with document sentence results in a noisy matching. We propose a Semantic Role Labeling (SRL) based approach to identify event spans in sentences and use a state-of-the-art sentence matching model, Sentence BERT (SBERT) to match event spans in queries and documents without any supervision. To evaluate our approach we construct an event retrieval dataset from ACE which is an existing event detection dataset. Experimental results show that it is valuable to predict event spans in queries and documents and our proposed unsupervised approach achieves superior performance compared to Query Likelihood (QL), Relevance Model 3 (RM3) and SBERT.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一个跨语言事件检索的实例查询(QBE)设置。在此设置中,用户使用一种语言的示例句子描述查询事件,检索系统返回描述查询事件的句子排序列表,但这些句子来自不同语言的语料库。在这种情况下,一个挑战是一个句子可能会提到多个事件。因此,将查询句子与文档句子进行匹配会导致有噪声的匹配。我们提出了一种基于语义角色标记(SRL)的方法来识别句子中的事件跨度,并使用最先进的句子匹配模型,句子BERT (SBERT)来匹配查询和文档中的事件跨度,而无需任何监督。为了评估我们的方法,我们从ACE构建了一个事件检索数据集,这是一个现有的事件检测数据集。实验结果表明,我们提出的无监督方法在预测查询和文档中的事件跨度方面是有价值的,与查询似然(QL)、关联模型3 (RM3)和SBERT相比,我们提出的无监督方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Query by Example for Cross-Lingual Event Retrieval
We propose a Query by Example (QBE) setting for cross-lingual event retrieval. In this setting, a user describes a query event using example sentences in one language, and a retrieval system returns a ranked list of sentences that describe the query event, but from a corpus in a different language. One challenge in this setting is that a sentence may mention more than one event. Hence, matching the query sentence with document sentence results in a noisy matching. We propose a Semantic Role Labeling (SRL) based approach to identify event spans in sentences and use a state-of-the-art sentence matching model, Sentence BERT (SBERT) to match event spans in queries and documents without any supervision. To evaluate our approach we construct an event retrieval dataset from ACE which is an existing event detection dataset. Experimental results show that it is valuable to predict event spans in queries and documents and our proposed unsupervised approach achieves superior performance compared to Query Likelihood (QL), Relevance Model 3 (RM3) and SBERT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1