可行预算下的移动众测数据质量感知任务分配

Xiaohui Wei, Yongfang Wang, Shang Gao, Yao Tang
{"title":"可行预算下的移动众测数据质量感知任务分配","authors":"Xiaohui Wei, Yongfang Wang, Shang Gao, Yao Tang","doi":"10.1109/IWQoS.2018.8624172","DOIUrl":null,"url":null,"abstract":"Satisfying spatial-temporal coverage requirement in the interested regions while considering the quality of the sensing data with budget limitation is a major research challenge in mobile crowdsensing. Most existing research in this field focus on the number of sensor readings collected in each covered subarea and do not consider individual differences of participants for contributing to data quality improvement. In this paper, we propose a novel coverage metric, quality coverage, which considers both the spatial coverage and the quality of sensing data and then use task allocation approaches to achieve highly diverse and spatial quality coverage level within a limited budget for different application scenarios.","PeriodicalId":222290,"journal":{"name":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data Quality Aware Task Allocation Under a Feasible Budget in Mobile Crowdsensing\",\"authors\":\"Xiaohui Wei, Yongfang Wang, Shang Gao, Yao Tang\",\"doi\":\"10.1109/IWQoS.2018.8624172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfying spatial-temporal coverage requirement in the interested regions while considering the quality of the sensing data with budget limitation is a major research challenge in mobile crowdsensing. Most existing research in this field focus on the number of sensor readings collected in each covered subarea and do not consider individual differences of participants for contributing to data quality improvement. In this paper, we propose a novel coverage metric, quality coverage, which considers both the spatial coverage and the quality of sensing data and then use task allocation approaches to achieve highly diverse and spatial quality coverage level within a limited budget for different application scenarios.\",\"PeriodicalId\":222290,\"journal\":{\"name\":\"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS.2018.8624172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2018.8624172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在预算有限的情况下,满足感兴趣区域的时空覆盖要求,同时考虑感知数据的质量是移动众测的主要研究挑战。该领域的大多数现有研究关注的是在每个覆盖的子区域收集的传感器读数的数量,而没有考虑参与者的个体差异,以促进数据质量的提高。在本文中,我们提出了一种新的覆盖度量,即质量覆盖,它同时考虑了遥感数据的空间覆盖和质量,然后使用任务分配方法在有限的预算范围内实现不同应用场景的高度多样化和空间质量覆盖水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Quality Aware Task Allocation Under a Feasible Budget in Mobile Crowdsensing
Satisfying spatial-temporal coverage requirement in the interested regions while considering the quality of the sensing data with budget limitation is a major research challenge in mobile crowdsensing. Most existing research in this field focus on the number of sensor readings collected in each covered subarea and do not consider individual differences of participants for contributing to data quality improvement. In this paper, we propose a novel coverage metric, quality coverage, which considers both the spatial coverage and the quality of sensing data and then use task allocation approaches to achieve highly diverse and spatial quality coverage level within a limited budget for different application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome from General Chair Back How Would you Like Your Packets Delivered? An SDN-Enabled Open Platform for QoS Routing Byte Segment Neural Network for Network Traffic Classification Enabling Privacy-Preserving Header Matching for Outsourced Middleboxes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1