地下雷达图像的无监督分割

W. Al-Nuaimy, Yi Huang, S. Shihab, A. Eriksen
{"title":"地下雷达图像的无监督分割","authors":"W. Al-Nuaimy, Yi Huang, S. Shihab, A. Eriksen","doi":"10.1117/12.462233","DOIUrl":null,"url":null,"abstract":"The volume of image data generated in ground-penetrating radar surveys can severely restrict the practicality of this site investigation technique. This is particularly true in situations where automatic analysis or interpretation is required, as segmentation and classification tasks that utilise multivariate data are critically affected by the volume and dimensionality of the data. A general-purpose unsupervised image segmentation system is presented here for the automatic detection of image regions exhibiting different visual texture properties. A suboptimal feature selection procedure is proposed to automatically select the set of texture features best suited for the particular application. The reduction in the size of the feature set both reduces the computation time and improves the accuracy of the final classification.","PeriodicalId":256772,"journal":{"name":"International Conference on Ground Penetrating Radar","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised segmentaiton of subsurface radar images\",\"authors\":\"W. Al-Nuaimy, Yi Huang, S. Shihab, A. Eriksen\",\"doi\":\"10.1117/12.462233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of image data generated in ground-penetrating radar surveys can severely restrict the practicality of this site investigation technique. This is particularly true in situations where automatic analysis or interpretation is required, as segmentation and classification tasks that utilise multivariate data are critically affected by the volume and dimensionality of the data. A general-purpose unsupervised image segmentation system is presented here for the automatic detection of image regions exhibiting different visual texture properties. A suboptimal feature selection procedure is proposed to automatically select the set of texture features best suited for the particular application. The reduction in the size of the feature set both reduces the computation time and improves the accuracy of the final classification.\",\"PeriodicalId\":256772,\"journal\":{\"name\":\"International Conference on Ground Penetrating Radar\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.462233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.462233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

探地雷达测量产生的图像数据量严重制约了该现场调查技术的实用性。在需要自动分析或解释的情况下尤其如此,因为使用多变量数据的分割和分类任务受到数据量和维度的严重影响。本文提出了一种通用的无监督图像分割系统,用于自动检测具有不同视觉纹理属性的图像区域。提出了一种次优特征选择方法,用于自动选择最适合特定应用的纹理特征集。特征集大小的减小既减少了计算时间,又提高了最终分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised segmentaiton of subsurface radar images
The volume of image data generated in ground-penetrating radar surveys can severely restrict the practicality of this site investigation technique. This is particularly true in situations where automatic analysis or interpretation is required, as segmentation and classification tasks that utilise multivariate data are critically affected by the volume and dimensionality of the data. A general-purpose unsupervised image segmentation system is presented here for the automatic detection of image regions exhibiting different visual texture properties. A suboptimal feature selection procedure is proposed to automatically select the set of texture features best suited for the particular application. The reduction in the size of the feature set both reduces the computation time and improves the accuracy of the final classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a tropical ice body on Iztaccihuatl volcano, Mexico Neural network target identifier based on statistical features of GPR signals 3D estimation of target positions with borehole radar using e-field sensor array Advanced processing of cross-hole radar-tomographic data: inversion of partial data sets and error analysis Polarimetric model for a stepped-frequency continuous-wave ground-penetrating radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1