{"title":"利用引力波观测探测量子引力","authors":"J. Tarrant, S. Colafrancesco","doi":"10.22323/1.319.0027","DOIUrl":null,"url":null,"abstract":"Electromagnetic radiation is known to be associated with certain gravitational waves events, i.e. the collision of binary neutron stars. Establishing this connection is non-trivial. However, if electromagnetic counterparts could be produced by directly converting gravitons into photons, then a simple smoking gun test exists linking the two events. This model uses the general and conversion mechanism discussed by Raffelt and Stodolsky. Furthermore, because this mechanism is generic to the symmetries of general relativity and the standard model and because it assumes a quantised gravitational field, we may probe both the existence of the graviton and the scale at which quantum gravity effects (and thus very high-energy phenomena) become relevant using simple low-energy experiments.","PeriodicalId":366250,"journal":{"name":"Proceedings of 5th Annual Conference on High Energy Astrophysics in Southern Africa — PoS(HEASA2017)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Gravitational Wave Observations to Probe Quantum Gravity\",\"authors\":\"J. Tarrant, S. Colafrancesco\",\"doi\":\"10.22323/1.319.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic radiation is known to be associated with certain gravitational waves events, i.e. the collision of binary neutron stars. Establishing this connection is non-trivial. However, if electromagnetic counterparts could be produced by directly converting gravitons into photons, then a simple smoking gun test exists linking the two events. This model uses the general and conversion mechanism discussed by Raffelt and Stodolsky. Furthermore, because this mechanism is generic to the symmetries of general relativity and the standard model and because it assumes a quantised gravitational field, we may probe both the existence of the graviton and the scale at which quantum gravity effects (and thus very high-energy phenomena) become relevant using simple low-energy experiments.\",\"PeriodicalId\":366250,\"journal\":{\"name\":\"Proceedings of 5th Annual Conference on High Energy Astrophysics in Southern Africa — PoS(HEASA2017)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th Annual Conference on High Energy Astrophysics in Southern Africa — PoS(HEASA2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.319.0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th Annual Conference on High Energy Astrophysics in Southern Africa — PoS(HEASA2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.319.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Gravitational Wave Observations to Probe Quantum Gravity
Electromagnetic radiation is known to be associated with certain gravitational waves events, i.e. the collision of binary neutron stars. Establishing this connection is non-trivial. However, if electromagnetic counterparts could be produced by directly converting gravitons into photons, then a simple smoking gun test exists linking the two events. This model uses the general and conversion mechanism discussed by Raffelt and Stodolsky. Furthermore, because this mechanism is generic to the symmetries of general relativity and the standard model and because it assumes a quantised gravitational field, we may probe both the existence of the graviton and the scale at which quantum gravity effects (and thus very high-energy phenomena) become relevant using simple low-energy experiments.