用于物联网无线设备的ZigBee发射器

A. Mounica, G. Subbareddy
{"title":"用于物联网无线设备的ZigBee发射器","authors":"A. Mounica, G. Subbareddy","doi":"10.2139/ssrn.3377852","DOIUrl":null,"url":null,"abstract":"The rapid development in wireless networking has been witnessed in past several years, which aimed on high speed and long range applications. There are different protocol standards used for the short range wireless communication namely the Bluetooth, ZigBee, Wimax and Wi-Fi. Among these standards ZigBee is based on IEEE 802.15.4 protocol can meet a wider variety of real industrial needs due to its long-term battery operation and reliability of the mesh networking architecture. The increasing demand for low data rate and low power networking led to the development of ZigBee technology. This technology was developed for Wireless Personal Area Networks (WPAN), directed at control and military applications, where low cost, low data rate, and more battery life were main requirements. This paper presents VerilogHDL simulation of the Top level module (Cyclic Redundancy Check, Bit-to-Symbol block, Symbol-to-Chip block, OQPSK block and Pulse shaping) of the ZigBee transmitter for IoT applications.","PeriodicalId":412391,"journal":{"name":"ChemRN: Materials Processing (Topic)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ZigBee Transmitter for IoT Wireless Devices\",\"authors\":\"A. Mounica, G. Subbareddy\",\"doi\":\"10.2139/ssrn.3377852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development in wireless networking has been witnessed in past several years, which aimed on high speed and long range applications. There are different protocol standards used for the short range wireless communication namely the Bluetooth, ZigBee, Wimax and Wi-Fi. Among these standards ZigBee is based on IEEE 802.15.4 protocol can meet a wider variety of real industrial needs due to its long-term battery operation and reliability of the mesh networking architecture. The increasing demand for low data rate and low power networking led to the development of ZigBee technology. This technology was developed for Wireless Personal Area Networks (WPAN), directed at control and military applications, where low cost, low data rate, and more battery life were main requirements. This paper presents VerilogHDL simulation of the Top level module (Cyclic Redundancy Check, Bit-to-Symbol block, Symbol-to-Chip block, OQPSK block and Pulse shaping) of the ZigBee transmitter for IoT applications.\",\"PeriodicalId\":412391,\"journal\":{\"name\":\"ChemRN: Materials Processing (Topic)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRN: Materials Processing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3377852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRN: Materials Processing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3377852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线网络在过去的几年中得到了快速发展,其目标是高速和远程应用。短距离无线通信有不同的协议标准,即蓝牙、ZigBee、Wimax和Wi-Fi。在这些标准中,ZigBee基于IEEE 802.15.4协议,由于其电池长期运行和网状网络架构的可靠性,可以满足更广泛的实际工业需求。对低数据速率和低功耗网络的需求日益增长,导致了ZigBee技术的发展。该技术是为无线个人区域网络(WPAN)开发的,针对控制和军事应用,其中低成本,低数据速率和更长的电池寿命是主要要求。本文介绍了用于物联网应用的ZigBee发射机的顶层模块(循环冗余校验、位码块、符号芯片块、OQPSK块和脉冲整形)的VerilogHDL仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZigBee Transmitter for IoT Wireless Devices
The rapid development in wireless networking has been witnessed in past several years, which aimed on high speed and long range applications. There are different protocol standards used for the short range wireless communication namely the Bluetooth, ZigBee, Wimax and Wi-Fi. Among these standards ZigBee is based on IEEE 802.15.4 protocol can meet a wider variety of real industrial needs due to its long-term battery operation and reliability of the mesh networking architecture. The increasing demand for low data rate and low power networking led to the development of ZigBee technology. This technology was developed for Wireless Personal Area Networks (WPAN), directed at control and military applications, where low cost, low data rate, and more battery life were main requirements. This paper presents VerilogHDL simulation of the Top level module (Cyclic Redundancy Check, Bit-to-Symbol block, Symbol-to-Chip block, OQPSK block and Pulse shaping) of the ZigBee transmitter for IoT applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compression Molding of Anisotropic Ndfeb Bonded Magnets in a Polycarbonate Matrix Digital Materials Design by Thermal-Fluid Science for Multi-Metals Additive Manufacturing Microstructure Analysis of Resistance Spot Welding of Commercial Low Carbon Steel using WC Micro-Powder Establishing the Rotation Speed Variation Range Limits for Auto-Excitation of Self-Oscillating Grinding in a Tumbling Mill Implementation of the Plasmochemical Activation of Technological Solutions in the Process of Ecologization of Malt Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1