车辆惯性对纯电动汽车再生制动系统的影响

J. Setiawan, Bentang Arief Budiman, I. Haryanto, M. Munadi, M. Ariyanto, Mohammad Alfian Hidayat
{"title":"车辆惯性对纯电动汽车再生制动系统的影响","authors":"J. Setiawan, Bentang Arief Budiman, I. Haryanto, M. Munadi, M. Ariyanto, Mohammad Alfian Hidayat","doi":"10.1109/ICEVT48285.2019.8993977","DOIUrl":null,"url":null,"abstract":"Electric vehicles have the advantage of regenerative braking in which the electric motor can be used as a generator to convert the kinetic energy of a moving vehicle into electrical energy during the braking process. The purpose of this study is to determine the effect of vehicle inertia on the voltage and electrical power profiles at the ultracapacitors as the energy storage system (ESS) and the vehicle speed during the motoring and the generating modes. In this study, an induction motor is used. The combination of regenerative and mechanical braking systems is regulated by the control logic to meet the driver's request. The mathematical model of a regenerative parallel braking system is coded in MATLAB/Simulink. The simulation results show the profiles of electric power flow, energy flow, mechanical braking torque, braking torque by the motor, and the State of Charge (SOC) of the ultracapacitor stacks.","PeriodicalId":125935,"journal":{"name":"2019 6th International Conference on Electric Vehicular Technology (ICEVT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Vehicle Inertia on Regenerative Braking Systems of Pure Electric Vehicles\",\"authors\":\"J. Setiawan, Bentang Arief Budiman, I. Haryanto, M. Munadi, M. Ariyanto, Mohammad Alfian Hidayat\",\"doi\":\"10.1109/ICEVT48285.2019.8993977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric vehicles have the advantage of regenerative braking in which the electric motor can be used as a generator to convert the kinetic energy of a moving vehicle into electrical energy during the braking process. The purpose of this study is to determine the effect of vehicle inertia on the voltage and electrical power profiles at the ultracapacitors as the energy storage system (ESS) and the vehicle speed during the motoring and the generating modes. In this study, an induction motor is used. The combination of regenerative and mechanical braking systems is regulated by the control logic to meet the driver's request. The mathematical model of a regenerative parallel braking system is coded in MATLAB/Simulink. The simulation results show the profiles of electric power flow, energy flow, mechanical braking torque, braking torque by the motor, and the State of Charge (SOC) of the ultracapacitor stacks.\",\"PeriodicalId\":125935,\"journal\":{\"name\":\"2019 6th International Conference on Electric Vehicular Technology (ICEVT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Electric Vehicular Technology (ICEVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEVT48285.2019.8993977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT48285.2019.8993977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电动汽车具有再生制动的优点,其中电动机可以作为发电机在制动过程中将移动车辆的动能转化为电能。本研究的目的是确定车辆惯性对作为储能系统(ESS)的超级电容器的电压和电力分布以及车辆在行驶和发电模式下的速度的影响。在本研究中,使用了感应电机。再生制动系统和机械制动系统的组合由控制逻辑调节,以满足驾驶员的要求。在MATLAB/Simulink中对再生式并联制动系统的数学模型进行了编码。仿真结果显示了超级电容器堆的电功率流、能量流、机械制动扭矩、电机制动扭矩和荷电状态(SOC)的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Vehicle Inertia on Regenerative Braking Systems of Pure Electric Vehicles
Electric vehicles have the advantage of regenerative braking in which the electric motor can be used as a generator to convert the kinetic energy of a moving vehicle into electrical energy during the braking process. The purpose of this study is to determine the effect of vehicle inertia on the voltage and electrical power profiles at the ultracapacitors as the energy storage system (ESS) and the vehicle speed during the motoring and the generating modes. In this study, an induction motor is used. The combination of regenerative and mechanical braking systems is regulated by the control logic to meet the driver's request. The mathematical model of a regenerative parallel braking system is coded in MATLAB/Simulink. The simulation results show the profiles of electric power flow, energy flow, mechanical braking torque, braking torque by the motor, and the State of Charge (SOC) of the ultracapacitor stacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Multiphase Cascaded DC-DC Boost Converters Sandwich Panel Composite Based Light-Weight Structure Design for Reserved Energy Storage System (RESS) Protection Experimental Study on the Aerodynamic Performance of Autonomous Boat with Wind Propulsion and Solar Power Side Collision Dynamic Analysis of Electric Bus Frame using Finite Element Method An Input-to-State Stable Implementation of Event-Triggered CBTC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1