基于背景信息抑制模板的全卷积Siamese网络目标跟踪算法

Hongyu Lu, Xiaodong Ren, M. Tong
{"title":"基于背景信息抑制模板的全卷积Siamese网络目标跟踪算法","authors":"Hongyu Lu, Xiaodong Ren, M. Tong","doi":"10.1109/ETFA45728.2021.9613350","DOIUrl":null,"url":null,"abstract":"The current visual object tracking algorithm of Fully-Convolutional Siamese Networks (SiamFC) has good performance of accuracy and frame rate. However, when tracking an object moving in a scene with complex background, the templates applied in SiamFC tend to introduce the excessive background information that may cause interference to the target. In this paper, a method of suppressing the background information in templates is proposed to cope with this problem. On one hand, it reduces the introduction of background information by using adaptive aspect ratio when making templates. On the other hand, it decreases the impact of background information on matching results through Gaussian weighting after the templates inevitably introduce background information. The effectiveness of the proposed method has been experimentally validated without loss of real-time performance. In the comparison experiments, the proposed algorithm has improved the area under curve (AUC) of success plots by 9.07% and 13.31% on OTB2013 dataset and OTB50 dataset, respectively, compared with the original SiamFC under the complex background interference scenarios.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object Tracking Algorithm of Fully-Convolutional Siamese Networks Using the Templates with Suppressed Background Information\",\"authors\":\"Hongyu Lu, Xiaodong Ren, M. Tong\",\"doi\":\"10.1109/ETFA45728.2021.9613350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current visual object tracking algorithm of Fully-Convolutional Siamese Networks (SiamFC) has good performance of accuracy and frame rate. However, when tracking an object moving in a scene with complex background, the templates applied in SiamFC tend to introduce the excessive background information that may cause interference to the target. In this paper, a method of suppressing the background information in templates is proposed to cope with this problem. On one hand, it reduces the introduction of background information by using adaptive aspect ratio when making templates. On the other hand, it decreases the impact of background information on matching results through Gaussian weighting after the templates inevitably introduce background information. The effectiveness of the proposed method has been experimentally validated without loss of real-time performance. In the comparison experiments, the proposed algorithm has improved the area under curve (AUC) of success plots by 9.07% and 13.31% on OTB2013 dataset and OTB50 dataset, respectively, compared with the original SiamFC under the complex background interference scenarios.\",\"PeriodicalId\":312498,\"journal\":{\"name\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA45728.2021.9613350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前基于全卷积连体网络(SiamFC)的视觉目标跟踪算法具有良好的精度和帧率。然而,当在复杂背景的场景中跟踪运动物体时,SiamFC中使用的模板容易引入过多的背景信息,从而对目标产生干扰。本文提出了一种抑制模板背景信息的方法来解决这一问题。一方面,在制作模板时采用自适应宽高比,减少了背景信息的引入;另一方面,在模板不可避免地引入背景信息后,通过高斯加权降低背景信息对匹配结果的影响。实验验证了该方法的有效性,且不影响实时性能。对比实验表明,在复杂背景干扰场景下,本文算法在OTB2013和OTB50数据集上的成功图的曲线下面积(AUC)分别比原始SiamFC算法提高了9.07%和13.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Tracking Algorithm of Fully-Convolutional Siamese Networks Using the Templates with Suppressed Background Information
The current visual object tracking algorithm of Fully-Convolutional Siamese Networks (SiamFC) has good performance of accuracy and frame rate. However, when tracking an object moving in a scene with complex background, the templates applied in SiamFC tend to introduce the excessive background information that may cause interference to the target. In this paper, a method of suppressing the background information in templates is proposed to cope with this problem. On one hand, it reduces the introduction of background information by using adaptive aspect ratio when making templates. On the other hand, it decreases the impact of background information on matching results through Gaussian weighting after the templates inevitably introduce background information. The effectiveness of the proposed method has been experimentally validated without loss of real-time performance. In the comparison experiments, the proposed algorithm has improved the area under curve (AUC) of success plots by 9.07% and 13.31% on OTB2013 dataset and OTB50 dataset, respectively, compared with the original SiamFC under the complex background interference scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Order Assignment Algorithm for Single-Rate Time-Driven AFAP Cyclic Executives Demonstrating Reinforcement Learning for Maintenance Scheduling in a Production Environment Investigation in IoT and 5G architectures for deployment of Artificial Intelligence into urban mobility and production Towards a Robust MMIO-based Synchronized Clock for Virtualized Edge Computing Devices LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1