卷积神经网络与支持向量机在花卉图像分类中的应用

Ari Peryanto, A. Yudhana, R. Umar
{"title":"卷积神经网络与支持向量机在花卉图像分类中的应用","authors":"Ari Peryanto, A. Yudhana, R. Umar","doi":"10.23917/khif.v8i1.15531","DOIUrl":null,"url":null,"abstract":"- Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.","PeriodicalId":326094,"journal":{"name":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convolutional Neural Network and Support Vector Machine in Classification of Flower Images\",\"authors\":\"Ari Peryanto, A. Yudhana, R. Umar\",\"doi\":\"10.23917/khif.v8i1.15531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.\",\"PeriodicalId\":326094,\"journal\":{\"name\":\"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23917/khif.v8i1.15531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/khif.v8i1.15531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

鲜花是许多行业的原料之一,包括制药和化妆品。花的人工分类需要植物学家的专业判断,而且耗时且不一致。使用计算机和技术对花卉进行分类的能力是解决这个问题的正确解决方案。在图像分类中有两种比较流行的算法,分别是卷积神经网络(CNN)和支持向量机(SVM)。CNN是一种深度神经网络分类算法,而SVM是一种机器学习算法。本研究旨在确定两种方法在花卉图像分类中的最佳表现。我们的观察表明,CNN在花卉图像分类方面优于SVM。CNN给出的准确率为91.6%,精密度为91.6%,召回率为91.6%,F1 Score为91.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Neural Network and Support Vector Machine in Classification of Flower Images
- Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Information and Management System of Student Competition Groups through User-Centered Design Approach Serious Game to Training Focus for Children with Attention Deficit Hyperactivity Disorder: “Tanji Adventure to the Diamond Temple” Measuring Usability on User-Centered Mobile Web Application: Case Study on Financial Mathematics Calculator Aggregate Functions in Categorical Data Skyline Search (CDSS) for Multi-keyword Document Search Design Development of Detection System and Ro-Ro Ship Notification based on Fuzzy Inference System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1