将人工译者风格融入英土文学机器翻译

Zeynep Yi̇rmi̇beşoğlu, Olgun Dursun, Harun Dalli, Mehmet Şahin, Ena Hodzik, Sabri Gürses, Tunga Güngör
{"title":"将人工译者风格融入英土文学机器翻译","authors":"Zeynep Yi̇rmi̇beşoğlu, Olgun Dursun, Harun Dalli, Mehmet Şahin, Ena Hodzik, Sabri Gürses, Tunga Güngör","doi":"10.48550/arXiv.2307.11457","DOIUrl":null,"url":null,"abstract":"Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.","PeriodicalId":137211,"journal":{"name":"European Association for Machine Translation Conferences/Workshops","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Human Translator Style into English-Turkish Literary Machine Translation\",\"authors\":\"Zeynep Yi̇rmi̇beşoğlu, Olgun Dursun, Harun Dalli, Mehmet Şahin, Ena Hodzik, Sabri Gürses, Tunga Güngör\",\"doi\":\"10.48550/arXiv.2307.11457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.\",\"PeriodicalId\":137211,\"journal\":{\"name\":\"European Association for Machine Translation Conferences/Workshops\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Association for Machine Translation Conferences/Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.11457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Association for Machine Translation Conferences/Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.11457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然机器翻译系统主要是为一般领域服务而设计的,但越来越多的人倾向于将这些系统应用于文学翻译等其他领域。本文以英土文学翻译为研究对象,建立了考虑译者文体特征的机器翻译模型。我们通过特定翻译人员的手动对齐作品来微调预训练的机器翻译模型。我们详细分析了手动对齐和自动对齐、数据增强方法和语料库大小对翻译的影响。本文提出了一种基于文体特征的翻译风格评价方法。我们表明,通过使模型适应译者的风格,可以在目标机器翻译中高度再现人类译者的风格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating Human Translator Style into English-Turkish Literary Machine Translation
Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Human Translator Style into English-Turkish Literary Machine Translation Automatic Discrimination of Human and Neural Machine Translation in Multilingual Scenarios Investigating Lexical Sharing in Multilingual Machine Translation for Indian Languages State Spaces Aren’t Enough: Machine Translation Needs Attention An Empirical Study of Leveraging Knowledge Distillation for Compressing Multilingual Neural Machine Translation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1