基于改进几何变化模型的片上互连并联统计电容提取

Wenjian Yu, Chao Hu, Wangyang Zhang
{"title":"基于改进几何变化模型的片上互连并联统计电容提取","authors":"Wenjian Yu, Chao Hu, Wangyang Zhang","doi":"10.1109/ASPDAC.2011.5722272","DOIUrl":null,"url":null,"abstract":"In this paper, a new geometric variation model, referred to as the improved continuous surface variation (ICSV) model, is proposed to accurately imitate the random variation of on-chip interconnects. In addition, a new statistical capacitance solver is implemented to incorporate the ICSV model, the HPC [5] and weighted PFA [6] techniques. The solver also employs a parallel computing technique to greatly improve its efficiency. Experiments show that on a typical 65nm-technology structure, ICSV model has significant advantage over other existing models, and the new solver is at least 10X faster than the MC simulation with 10000 samples. The parallel solver achieves 7X further speedup on an 8-core machine. We conclude this paper with several criteria to discuss the trade-off between different geometric models and statistical methods for different scenarios.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Parallel statistical capacitance extraction of on-chip interconnects with an improved geometric variation model\",\"authors\":\"Wenjian Yu, Chao Hu, Wangyang Zhang\",\"doi\":\"10.1109/ASPDAC.2011.5722272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new geometric variation model, referred to as the improved continuous surface variation (ICSV) model, is proposed to accurately imitate the random variation of on-chip interconnects. In addition, a new statistical capacitance solver is implemented to incorporate the ICSV model, the HPC [5] and weighted PFA [6] techniques. The solver also employs a parallel computing technique to greatly improve its efficiency. Experiments show that on a typical 65nm-technology structure, ICSV model has significant advantage over other existing models, and the new solver is at least 10X faster than the MC simulation with 10000 samples. The parallel solver achieves 7X further speedup on an 8-core machine. We conclude this paper with several criteria to discuss the trade-off between different geometric models and statistical methods for different scenarios.\",\"PeriodicalId\":316253,\"journal\":{\"name\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2011.5722272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种新的几何变化模型,即改进的连续表面变化(ICSV)模型,以准确地模拟片上互连的随机变化。此外,还实现了一种新的统计电容求解器,结合了ICSV模型、HPC[5]和加权PFA[6]技术。求解器还采用了并行计算技术,大大提高了求解效率。实验表明,在典型的65nm工艺结构上,ICSV模型比其他现有模型具有显著的优势,并且新的求解器比具有10000个样本的MC模拟快至少10倍。并行求解器在8核机器上实现了7倍的进一步加速。最后,我们用几个准则来讨论不同几何模型和统计方法在不同场景下的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel statistical capacitance extraction of on-chip interconnects with an improved geometric variation model
In this paper, a new geometric variation model, referred to as the improved continuous surface variation (ICSV) model, is proposed to accurately imitate the random variation of on-chip interconnects. In addition, a new statistical capacitance solver is implemented to incorporate the ICSV model, the HPC [5] and weighted PFA [6] techniques. The solver also employs a parallel computing technique to greatly improve its efficiency. Experiments show that on a typical 65nm-technology structure, ICSV model has significant advantage over other existing models, and the new solver is at least 10X faster than the MC simulation with 10000 samples. The parallel solver achieves 7X further speedup on an 8-core machine. We conclude this paper with several criteria to discuss the trade-off between different geometric models and statistical methods for different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Register pressure aware scheduling for high level synthesis Robust and efficient baseband receiver design for MB-OFDM UWB system Area-efficient FPGA logic elements: Architecture and synthesis Utilizing high level design information to speed up post-silicon debugging Device-parameter estimation with on-chip variation sensors considering random variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1