基于事件的神经形态硬件光流

T. Brosch, H. Neumann
{"title":"基于事件的神经形态硬件光流","authors":"T. Brosch, H. Neumann","doi":"10.4108/EAI.3-12-2015.2262447","DOIUrl":null,"url":null,"abstract":"Event-based sensing, i.e. the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition using standard cameras. Recently, we proposed a novel biologically inspired efficient motion detector for such event-based input streams and demonstrated how a canonical neural circuit can improve such representations using normalization and feedback. In this contribution, we suggest how such a motion detection scheme is defined by utilizing a canonical neural circuit corresponding to the resolution of cortical columns. In addition, we develop a mapping of key computational elements of this circuit model onto neuromorphic hardware. In particular, we focus on the recently developed TrueNorth chip architecture by IBM to realize a real-time, energy-efficient and adjustable neuromorphic optical flow detector. We demonstrate the function of the computations of the canonical model and its approximate neuromorphic realization.","PeriodicalId":415083,"journal":{"name":"International Conference on Bio-inspired Information and Communications Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Event-based optical flow on neuromorphic hardware\",\"authors\":\"T. Brosch, H. Neumann\",\"doi\":\"10.4108/EAI.3-12-2015.2262447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event-based sensing, i.e. the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition using standard cameras. Recently, we proposed a novel biologically inspired efficient motion detector for such event-based input streams and demonstrated how a canonical neural circuit can improve such representations using normalization and feedback. In this contribution, we suggest how such a motion detection scheme is defined by utilizing a canonical neural circuit corresponding to the resolution of cortical columns. In addition, we develop a mapping of key computational elements of this circuit model onto neuromorphic hardware. In particular, we focus on the recently developed TrueNorth chip architecture by IBM to realize a real-time, energy-efficient and adjustable neuromorphic optical flow detector. We demonstrate the function of the computations of the canonical model and its approximate neuromorphic realization.\",\"PeriodicalId\":415083,\"journal\":{\"name\":\"International Conference on Bio-inspired Information and Communications Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Bio-inspired Information and Communications Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.3-12-2015.2262447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Bio-inspired Information and Communications Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.3-12-2015.2262447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于事件的感知,即亮度变化的异步检测,保证了低能量、高动态范围和稀疏感知。这与使用标准相机的全图像帧采集形成鲜明对比。最近,我们提出了一种新的生物启发的高效运动检测器,用于这种基于事件的输入流,并演示了规范神经回路如何使用归一化和反馈来改善这种表征。在这一贡献中,我们建议如何利用与皮质柱分辨率相对应的规范神经回路来定义这种运动检测方案。此外,我们开发了该电路模型的关键计算元素映射到神经形态硬件。我们特别关注IBM最近开发的TrueNorth芯片架构,以实现实时,节能和可调的神经形态光流检测器。我们证明了规范模型的计算功能及其近似神经形态的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event-based optical flow on neuromorphic hardware
Event-based sensing, i.e. the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition using standard cameras. Recently, we proposed a novel biologically inspired efficient motion detector for such event-based input streams and demonstrated how a canonical neural circuit can improve such representations using normalization and feedback. In this contribution, we suggest how such a motion detection scheme is defined by utilizing a canonical neural circuit corresponding to the resolution of cortical columns. In addition, we develop a mapping of key computational elements of this circuit model onto neuromorphic hardware. In particular, we focus on the recently developed TrueNorth chip architecture by IBM to realize a real-time, energy-efficient and adjustable neuromorphic optical flow detector. We demonstrate the function of the computations of the canonical model and its approximate neuromorphic realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Taking Cognition Seriously: A generalised physics of cognition Digestive System Dynamics in Molecular Communication Perspectives Sensor Scheme for Target Tracking in Mobile Sensor Networks Leak-Resistant Design of DNA Strand Displacement Systems Design for Detecting Red Blood Cell Deformation at Different Flow Velocities in Blood Vessel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1