T. Tsuchiya, K. Sugano, Hideki Takahashi, H. Seo, Y. Pihosh, Y. Kazoe, K. Mawatari, T. Kitamori, O. Tabata
{"title":"制备微纳通道器件的铌酸锂晶圆干蚀刻及低温直接键合工艺","authors":"T. Tsuchiya, K. Sugano, Hideki Takahashi, H. Seo, Y. Pihosh, Y. Kazoe, K. Mawatari, T. Kitamori, O. Tabata","doi":"10.1109/TRANSDUCERS.2017.7994281","DOIUrl":null,"url":null,"abstract":"We have developed dry etching process of lithium niobate (LN) wafer using neutral loop discharge reactive ion etching (NLD-RIE) to fabricate both micro- and nano-channels for investigating proton diffusion enhancement in ferroelectric nanochannels. We have also developed low-temperature direct bonding process between LN wafers. Two-hundred parallel nanochannel array of 200-nm deep and wide and 400-μm long connected to two microchannels (width: 500 μm, depth: 5.9 μm) at the both ends were fabricated. We have succeeded in measuring the proton diffusion coefficient as high as 1.2×10−8 m2/s.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dry etching and low-temperature direct bonding process of lithium niobate wafer for fabricating micro/nano channel device\",\"authors\":\"T. Tsuchiya, K. Sugano, Hideki Takahashi, H. Seo, Y. Pihosh, Y. Kazoe, K. Mawatari, T. Kitamori, O. Tabata\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed dry etching process of lithium niobate (LN) wafer using neutral loop discharge reactive ion etching (NLD-RIE) to fabricate both micro- and nano-channels for investigating proton diffusion enhancement in ferroelectric nanochannels. We have also developed low-temperature direct bonding process between LN wafers. Two-hundred parallel nanochannel array of 200-nm deep and wide and 400-μm long connected to two microchannels (width: 500 μm, depth: 5.9 μm) at the both ends were fabricated. We have succeeded in measuring the proton diffusion coefficient as high as 1.2×10−8 m2/s.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dry etching and low-temperature direct bonding process of lithium niobate wafer for fabricating micro/nano channel device
We have developed dry etching process of lithium niobate (LN) wafer using neutral loop discharge reactive ion etching (NLD-RIE) to fabricate both micro- and nano-channels for investigating proton diffusion enhancement in ferroelectric nanochannels. We have also developed low-temperature direct bonding process between LN wafers. Two-hundred parallel nanochannel array of 200-nm deep and wide and 400-μm long connected to two microchannels (width: 500 μm, depth: 5.9 μm) at the both ends were fabricated. We have succeeded in measuring the proton diffusion coefficient as high as 1.2×10−8 m2/s.