{"title":"多凸约束的自适应投影子梯度法和集合论自适应滤波","authors":"K. Slavakis, I. Yamada, N. Ogura, M. Yukawa","doi":"10.1109/ACSSC.2004.1399281","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints\",\"authors\":\"K. Slavakis, I. Yamada, N. Ogura, M. Yukawa\",\"doi\":\"10.1109/ACSSC.2004.1399281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.\",\"PeriodicalId\":396779,\"journal\":{\"name\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2004.1399281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints
This paper presents an algorithmic solution, the adaptive projected subgradient method, to the problem of asymptotically minimizing a certain sequence of nonnegative continuous convex functions over the fixed point set of strongly attracting nonexpansive mappings in a real Hilbert space. The proposed method provides with a strongly convergent, asymptotically optimal point sequence as well as with a characterization of the limiting point. As a side effect, the method allows the asymptotic minimization over the nonempty intersection of a finite number of closed convex sets. Thus, new directions for set theoretic adaptive filtering algorithms are revealed whenever the estimandum (system to be identified) is known to satisfy a number of convex constraints. This leads to a unification of a wide range of set theoretic adaptive filtering schemes such as NLMS, projected or constrained NLMS, APA, adaptive parallel subgradient projection algorithm, adaptive parallel min-max projection algorithm as well as their embedded constraint versions. Numerical results demonstrate the effectiveness of the proposed method to the problem of stereophonic acoustic echo cancellation.