效价觉醒空间中基于排序的动作捕捉数据影响估计

William Li, Omid Alemi, Jianyu Fan, Philippe Pasquier
{"title":"效价觉醒空间中基于排序的动作捕捉数据影响估计","authors":"William Li, Omid Alemi, Jianyu Fan, Philippe Pasquier","doi":"10.1145/3212721.3212813","DOIUrl":null,"url":null,"abstract":"Affect estimation consists of building a predictive model of the perceived affect given stimuli. In this study, we are looking at the perceived affect in full-body motion capture data of various movements. There are two parts to this study. In the first part, we conduct groundtruthing on affective labels of motion capture sequences by hosting a survey on a crowdsourcing platform where participants from all over the world ranked the relative valence and arousal of one motion capture sequences to another. In the second part, we present our experiments with training a machine learning model for pairwise ranking of motion capture data using RankNet. Our analysis shows a reasonable strength in the inter-rater agreement between the participants. The evaluation of the RankNet demonstrates that it can learn to rank the motion capture data, with higher confidence in the arousal dimension compared to the valence dimension.","PeriodicalId":330867,"journal":{"name":"Proceedings of the 5th International Conference on Movement and Computing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranking-Based Affect Estimation of Motion Capture Data in the Valence-Arousal Space\",\"authors\":\"William Li, Omid Alemi, Jianyu Fan, Philippe Pasquier\",\"doi\":\"10.1145/3212721.3212813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affect estimation consists of building a predictive model of the perceived affect given stimuli. In this study, we are looking at the perceived affect in full-body motion capture data of various movements. There are two parts to this study. In the first part, we conduct groundtruthing on affective labels of motion capture sequences by hosting a survey on a crowdsourcing platform where participants from all over the world ranked the relative valence and arousal of one motion capture sequences to another. In the second part, we present our experiments with training a machine learning model for pairwise ranking of motion capture data using RankNet. Our analysis shows a reasonable strength in the inter-rater agreement between the participants. The evaluation of the RankNet demonstrates that it can learn to rank the motion capture data, with higher confidence in the arousal dimension compared to the valence dimension.\",\"PeriodicalId\":330867,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Movement and Computing\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Movement and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212721.3212813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Movement and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212721.3212813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感估计包括在给定的刺激下建立感知情感的预测模型。在这项研究中,我们正在观察各种动作的全身动作捕捉数据的感知影响。本研究分为两部分。在第一部分中,我们通过在众包平台上举办一项调查来对动作捕捉序列的情感标签进行实地调查,来自世界各地的参与者将一个动作捕捉序列的相对价和唤醒排序到另一个动作捕捉序列。在第二部分中,我们介绍了使用RankNet训练机器学习模型对运动捕捉数据进行两两排序的实验。我们的分析显示,参与者之间的评分一致性有一定的强度。对RankNet的评估表明,它可以学习对动作捕捉数据进行排序,并且对唤醒维度的置信度比价维度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ranking-Based Affect Estimation of Motion Capture Data in the Valence-Arousal Space
Affect estimation consists of building a predictive model of the perceived affect given stimuli. In this study, we are looking at the perceived affect in full-body motion capture data of various movements. There are two parts to this study. In the first part, we conduct groundtruthing on affective labels of motion capture sequences by hosting a survey on a crowdsourcing platform where participants from all over the world ranked the relative valence and arousal of one motion capture sequences to another. In the second part, we present our experiments with training a machine learning model for pairwise ranking of motion capture data using RankNet. Our analysis shows a reasonable strength in the inter-rater agreement between the participants. The evaluation of the RankNet demonstrates that it can learn to rank the motion capture data, with higher confidence in the arousal dimension compared to the valence dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Posthuman Gesture Attitude Modeling for Virtual Character Based on Temporal Sequence Mining: Extraction and Evaluation Interactive Effect of Tempo and Rhythm on the Emotional Perception of Dance Movements Modosc Proceedings of the 5th International Conference on Movement and Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1