Smart-Tree:用于3D树骨架化的点云的神经内轴线逼近

Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas
{"title":"Smart-Tree:用于3D树骨架化的点云的神经内轴线逼近","authors":"Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas","doi":"10.48550/arXiv.2303.11560","DOIUrl":null,"url":null,"abstract":"This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.","PeriodicalId":319553,"journal":{"name":"Iberian Conference on Pattern Recognition and Image Analysis","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization\",\"authors\":\"Harry Dobbs, O. Batchelor, Richard D. Green, J. Atlas\",\"doi\":\"10.48550/arXiv.2303.11560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.\",\"PeriodicalId\":319553,\"journal\":{\"name\":\"Iberian Conference on Pattern Recognition and Image Analysis\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iberian Conference on Pattern Recognition and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.11560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberian Conference on Pattern Recognition and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.11560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于树点云的树枝骨架中间轴的监督逼近方法Smart-Tree。Smart-Tree使用稀疏体素卷积神经网络提取每个输入点的中轴线的半径和方向。贪婪算法使用估计的内轴线执行鲁棒骨架化。我们提出的方法提供了对复杂树结构的鲁棒性,并在处理自遮挡、复杂几何、接触分支和变化点密度时提高了保真度。我们使用多物种合成树数据集评估Smart-Tree,并对现实世界的树点云进行定性分析。我们对合成和真实世界数据集的实验证明了我们的方法比当前最先进的方法具有鲁棒性。数据集和源代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization
This paper introduces Smart-Tree, a supervised method for approximating the medial axes of branch skeletons from a tree point cloud. Smart-Tree uses a sparse voxel convolutional neural network to extract the radius and direction towards the medial axis of each input point. A greedy algorithm performs robust skeletonization using the estimated medial axis. Our proposed method provides robustness to complex tree structures and improves fidelity when dealing with self-occlusions, complex geometry, touching branches, and varying point densities. We evaluate Smart-Tree using a multi-species synthetic tree dataset and perform qualitative analysis on a real-world tree point cloud. Our experimentation with synthetic and real-world datasets demonstrates the robustness of our approach over the current state-of-the-art method. The dataset and source code are publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to search for and detect objects in foveal images using deep learning Smart-Tree: Neural Medial Axis Approximation of Point Clouds for 3D Tree Skeletonization A Study of Augmentation Methods for Handwritten Stenography Recognition Can representation learning for multimodal image registration be improved by supervision of intermediate layers? An End-to-End Approach for Seam Carving Detection using Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1