MR-PDP:多副本可证明的数据占有

Reza Curtmola, O. Khan, R. Burns, G. Ateniese
{"title":"MR-PDP:多副本可证明的数据占有","authors":"Reza Curtmola, O. Khan, R. Burns, G. Ateniese","doi":"10.1109/ICDCS.2008.68","DOIUrl":null,"url":null,"abstract":"Many storage systems rely on replication to increase the availability and durability of data on untrusted storage systems. At present, such storage systems provide no strong evidence that multiple copies of the data are actually stored. Storage servers can collude to make it look like they are storing many copies of the data, whereas in reality they only store a single copy. We address this shortcoming through multiple-replica provable data possession (MR-PDP): A provably-secure scheme that allows a client that stores t replicas of a file in a storage system to verify through a challenge-response protocol that (1) each unique replica can be produced at the time of the challenge and that (2) the storage system uses t times the storage required to store a single replica. MR-PDP extends previous work on data possession proofs for a single copy of a file in a client/server storage system (Ateniese et al., 2007). Using MR-PDP to store t replicas is computationally much more efficient than using a single-replica PDP scheme to store t separate, unrelated files (e.g., by encrypting each file separately prior to storing it). Another advantage of MR-PDP is that it can generate further replicas on demand, at little expense, when some of the existing replicas fail.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"569","resultStr":"{\"title\":\"MR-PDP: Multiple-Replica Provable Data Possession\",\"authors\":\"Reza Curtmola, O. Khan, R. Burns, G. Ateniese\",\"doi\":\"10.1109/ICDCS.2008.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many storage systems rely on replication to increase the availability and durability of data on untrusted storage systems. At present, such storage systems provide no strong evidence that multiple copies of the data are actually stored. Storage servers can collude to make it look like they are storing many copies of the data, whereas in reality they only store a single copy. We address this shortcoming through multiple-replica provable data possession (MR-PDP): A provably-secure scheme that allows a client that stores t replicas of a file in a storage system to verify through a challenge-response protocol that (1) each unique replica can be produced at the time of the challenge and that (2) the storage system uses t times the storage required to store a single replica. MR-PDP extends previous work on data possession proofs for a single copy of a file in a client/server storage system (Ateniese et al., 2007). Using MR-PDP to store t replicas is computationally much more efficient than using a single-replica PDP scheme to store t separate, unrelated files (e.g., by encrypting each file separately prior to storing it). Another advantage of MR-PDP is that it can generate further replicas on demand, at little expense, when some of the existing replicas fail.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"569\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 569

摘要

许多存储系统依靠复制来提高不可信存储系统上数据的可用性和持久性。目前,这样的存储系统并没有提供强有力的证据证明实际上存储了数据的多个副本。存储服务器可以相互勾结,使其看起来像是在存储数据的多个副本,而实际上它们只存储一个副本。我们通过多副本可证明的数据占有(MR-PDP)解决了这个缺点:一个可证明的安全方案,允许在存储系统中存储文件的t个副本的客户端通过挑战-响应协议验证:(1)每个唯一副本可以在挑战时产生,(2)存储系统使用t倍存储单个副本所需的存储空间。MR-PDP扩展了以前在客户端/服务器存储系统中文件的单个副本的数据占有证明方面的工作(Ateniese et al., 2007)。使用MR-PDP存储t个副本比使用单副本PDP方案存储t个独立的、不相关的文件(例如,在存储每个文件之前分别加密)在计算上要高效得多。MR-PDP的另一个优点是,当一些现有的副本失败时,它可以按需生成更多的副本,而且花费很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MR-PDP: Multiple-Replica Provable Data Possession
Many storage systems rely on replication to increase the availability and durability of data on untrusted storage systems. At present, such storage systems provide no strong evidence that multiple copies of the data are actually stored. Storage servers can collude to make it look like they are storing many copies of the data, whereas in reality they only store a single copy. We address this shortcoming through multiple-replica provable data possession (MR-PDP): A provably-secure scheme that allows a client that stores t replicas of a file in a storage system to verify through a challenge-response protocol that (1) each unique replica can be produced at the time of the challenge and that (2) the storage system uses t times the storage required to store a single replica. MR-PDP extends previous work on data possession proofs for a single copy of a file in a client/server storage system (Ateniese et al., 2007). Using MR-PDP to store t replicas is computationally much more efficient than using a single-replica PDP scheme to store t separate, unrelated files (e.g., by encrypting each file separately prior to storing it). Another advantage of MR-PDP is that it can generate further replicas on demand, at little expense, when some of the existing replicas fail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relative Network Positioning via CDN Redirections Compiler-Assisted Application-Level Checkpointing for MPI Programs Exploring Anti-Spam Models in Large Scale VoIP Systems Correlation-Aware Object Placement for Multi-Object Operations Probing Queries in Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1