数据预处理改进SVM视频分类

L. Capodiferro, Luca Costantini, F. Mangiatordi, E. Pallotti
{"title":"数据预处理改进SVM视频分类","authors":"L. Capodiferro, Luca Costantini, F. Mangiatordi, E. Pallotti","doi":"10.1109/CBMI.2012.6269801","DOIUrl":null,"url":null,"abstract":"In this work a pre-processing strategy to improve the performances of SVM in video clips classification is proposed. The segmentation of a video clip and the extraction of key frames, whose representation in terms of low-level features constitute the basic elements for the generation of the SVM data sets, are generally performed in an automatic way. This approach may produce several noise data, and it is therefore desirable to find a removal strategy. Noise key frames are usually detected when video includes color bars, test cards or other homogeneous frames. Duplicated key frames, generated when video is steady for a long while, also need to be removed. In this paper we propose a data clustering method that performs an automatic pre-processing of SVM data sets, to minimize the presence of noise. Our experiments show an example of classification of historical sport video clips, demonstrating that the proposed pre-processing strategy improves the overall performances of SVM.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data pre-processing to improve SVM video classification\",\"authors\":\"L. Capodiferro, Luca Costantini, F. Mangiatordi, E. Pallotti\",\"doi\":\"10.1109/CBMI.2012.6269801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a pre-processing strategy to improve the performances of SVM in video clips classification is proposed. The segmentation of a video clip and the extraction of key frames, whose representation in terms of low-level features constitute the basic elements for the generation of the SVM data sets, are generally performed in an automatic way. This approach may produce several noise data, and it is therefore desirable to find a removal strategy. Noise key frames are usually detected when video includes color bars, test cards or other homogeneous frames. Duplicated key frames, generated when video is steady for a long while, also need to be removed. In this paper we propose a data clustering method that performs an automatic pre-processing of SVM data sets, to minimize the presence of noise. Our experiments show an example of classification of historical sport video clips, demonstrating that the proposed pre-processing strategy improves the overall performances of SVM.\",\"PeriodicalId\":120769,\"journal\":{\"name\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2012.6269801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了提高支持向量机在视频片段分类中的性能,本文提出了一种预处理策略。视频片段的分割和关键帧的提取是生成支持向量机数据集的基本要素,而关键帧的底层特征表示是关键帧的自动提取。这种方法可能会产生一些噪声数据,因此需要找到一种去除策略。噪声关键帧通常在视频包含色条、测试卡或其他同质帧时检测到。视频长时间稳定时产生的重复关键帧也需要删除。在本文中,我们提出了一种数据聚类方法,该方法对支持向量机数据集进行自动预处理,以尽量减少噪声的存在。我们的实验显示了一个历史体育视频片段的分类示例,表明所提出的预处理策略提高了支持向量机的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data pre-processing to improve SVM video classification
In this work a pre-processing strategy to improve the performances of SVM in video clips classification is proposed. The segmentation of a video clip and the extraction of key frames, whose representation in terms of low-level features constitute the basic elements for the generation of the SVM data sets, are generally performed in an automatic way. This approach may produce several noise data, and it is therefore desirable to find a removal strategy. Noise key frames are usually detected when video includes color bars, test cards or other homogeneous frames. Duplicated key frames, generated when video is steady for a long while, also need to be removed. In this paper we propose a data clustering method that performs an automatic pre-processing of SVM data sets, to minimize the presence of noise. Our experiments show an example of classification of historical sport video clips, demonstrating that the proposed pre-processing strategy improves the overall performances of SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water flow detection from a wearable device with a new feature, the spectral cover Comparing segmentation strategies for efficient video passage retrieval Audio and video cues for geo-tagging online videos in the absence of metadata Data pre-processing to improve SVM video classification Analyzing the behavior of professional video searchers using RAI query logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1