{"title":"RDS","authors":"Yaying Shi, Anjia Wang, Yonghong Yan, C. Liao","doi":"10.1145/3468737.3494089","DOIUrl":null,"url":null,"abstract":"Data races are notorious concurrency bugs which can cause severe problems, including random crashes and corrupted execution results. However, existing data race detection tools are still challenging for users to use. It takes a significant amount of effort for users to install, configure and properly use a tool. A single tool often cannot find all the bugs in a program. Requiring users to use multiple tools is often impracticable and not productive because of the differences in tool interfaces and report formats. In this paper, we present a cloud-based, service-oriented design and implementation of a race detection service (RDS)1 to detect data races in parallel programs. RDS integrates multiple data race detection tools into a single cloud-based service via a REST API. It defines a standard JSON format to represent data race detection results, facilitating producing user-friendly reports, aggregating output of multiple tools, as well as being easily processed by other tools. RDS also defines a set of policies for aggregating outputs from multiple tools. RDS significantly simplifies the workflow of using data race detection tools and improves the report quality and productivity of performing race detection for parallel programs. Our evaluation shows that RDS can deliver more accurate results with much less effort from users, when compared with the traditional way of using any individual tools. Using four selected tools and DataRaceBench, RDS improves the Adjusted F-1 scores by 8.8% and 12.6% over the best and the average scores, respectively. For the NAS Parallel Benchmark, RDS improves 35% of the adjusted accuracy compared to the average of the tools. Our work studies a new approach of composing software tools for parallel computing via a service-oriented architecture. The same approach and framework can be used to create metaservice for compilers, performance tools, auto-tuning tools, and so on.","PeriodicalId":254382,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RDS\",\"authors\":\"Yaying Shi, Anjia Wang, Yonghong Yan, C. Liao\",\"doi\":\"10.1145/3468737.3494089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data races are notorious concurrency bugs which can cause severe problems, including random crashes and corrupted execution results. However, existing data race detection tools are still challenging for users to use. It takes a significant amount of effort for users to install, configure and properly use a tool. A single tool often cannot find all the bugs in a program. Requiring users to use multiple tools is often impracticable and not productive because of the differences in tool interfaces and report formats. In this paper, we present a cloud-based, service-oriented design and implementation of a race detection service (RDS)1 to detect data races in parallel programs. RDS integrates multiple data race detection tools into a single cloud-based service via a REST API. It defines a standard JSON format to represent data race detection results, facilitating producing user-friendly reports, aggregating output of multiple tools, as well as being easily processed by other tools. RDS also defines a set of policies for aggregating outputs from multiple tools. RDS significantly simplifies the workflow of using data race detection tools and improves the report quality and productivity of performing race detection for parallel programs. Our evaluation shows that RDS can deliver more accurate results with much less effort from users, when compared with the traditional way of using any individual tools. Using four selected tools and DataRaceBench, RDS improves the Adjusted F-1 scores by 8.8% and 12.6% over the best and the average scores, respectively. For the NAS Parallel Benchmark, RDS improves 35% of the adjusted accuracy compared to the average of the tools. Our work studies a new approach of composing software tools for parallel computing via a service-oriented architecture. The same approach and framework can be used to create metaservice for compilers, performance tools, auto-tuning tools, and so on.\",\"PeriodicalId\":254382,\"journal\":{\"name\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468737.3494089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468737.3494089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RDS
Data races are notorious concurrency bugs which can cause severe problems, including random crashes and corrupted execution results. However, existing data race detection tools are still challenging for users to use. It takes a significant amount of effort for users to install, configure and properly use a tool. A single tool often cannot find all the bugs in a program. Requiring users to use multiple tools is often impracticable and not productive because of the differences in tool interfaces and report formats. In this paper, we present a cloud-based, service-oriented design and implementation of a race detection service (RDS)1 to detect data races in parallel programs. RDS integrates multiple data race detection tools into a single cloud-based service via a REST API. It defines a standard JSON format to represent data race detection results, facilitating producing user-friendly reports, aggregating output of multiple tools, as well as being easily processed by other tools. RDS also defines a set of policies for aggregating outputs from multiple tools. RDS significantly simplifies the workflow of using data race detection tools and improves the report quality and productivity of performing race detection for parallel programs. Our evaluation shows that RDS can deliver more accurate results with much less effort from users, when compared with the traditional way of using any individual tools. Using four selected tools and DataRaceBench, RDS improves the Adjusted F-1 scores by 8.8% and 12.6% over the best and the average scores, respectively. For the NAS Parallel Benchmark, RDS improves 35% of the adjusted accuracy compared to the average of the tools. Our work studies a new approach of composing software tools for parallel computing via a service-oriented architecture. The same approach and framework can be used to create metaservice for compilers, performance tools, auto-tuning tools, and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed federated service chaining for heterogeneous network environments Accord RDS Leveraging vCPU-utilization rates to select cost-efficient VMs for parallel workloads Multi-cloud serverless function composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1