基于神经网络和遗传算法的决策支持系统——以乳腺癌为例

F. Ahouz, A. Bastani, Amin Golabpour
{"title":"基于神经网络和遗传算法的决策支持系统——以乳腺癌为例","authors":"F. Ahouz, A. Bastani, Amin Golabpour","doi":"10.30699/fhi.v11i1.375","DOIUrl":null,"url":null,"abstract":"Introduction: Artificial intelligence has been changing the way healthcare has been provided in many high-risk environments or areas with poor healthcare facilities. The emergence of epidemics and new diseases, as well as the crucial role of early diagnosis in prevention and the adoption of more effective treatments have highlighted the need for accurate design and self-organization of Clinical Decision Support Systems (CDSSs).Material and Methods: In this study, a CDSS based on a neural networks (NN) and genetic algorithm is proposed. Since, on the one hand, the performance of the neural network (NN) is highly dependent on its parameters, and on the other hand, there is a constant need for optimization experts to fine-tune the parameters in the use of new data, a new chromosomal structure is proposed to automatically extract the optimal NN architecture, the number of layers and neurons. The goal is to increase the reusability of the model and ease of use by health experts.Results: To evaluate the performance of the model, two standard breast cancer (BC) datasets, WBC and WDBC, were used. The model uses 70% of the data set for training and the remaining equally used for evaluation and testing. The test accuracy of the proposed model on WBC and WDBC datasets was 98.51 and 97.55%, respectively. The optimal NN architecture on WBC consisted a three-hidden layers with 18, 15 and 19 neurons in each layers, and on WDBC consisted one hidden layer with a single neuron.Conclusion: The proposed chromosomal structure is able to derive optimal NN architecture. In according to the high classification accuracy of the model in the diagnosis of BC and providing the different architectures in accordance with the hardware implementation considerations, the proposed model can be used effectively in the diagnosis of other diseases.","PeriodicalId":154611,"journal":{"name":"Frontiers in Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decision Support System Based on Neural Network and Genetic Algorithm: Case Study of Breast Cancer\",\"authors\":\"F. Ahouz, A. Bastani, Amin Golabpour\",\"doi\":\"10.30699/fhi.v11i1.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Artificial intelligence has been changing the way healthcare has been provided in many high-risk environments or areas with poor healthcare facilities. The emergence of epidemics and new diseases, as well as the crucial role of early diagnosis in prevention and the adoption of more effective treatments have highlighted the need for accurate design and self-organization of Clinical Decision Support Systems (CDSSs).Material and Methods: In this study, a CDSS based on a neural networks (NN) and genetic algorithm is proposed. Since, on the one hand, the performance of the neural network (NN) is highly dependent on its parameters, and on the other hand, there is a constant need for optimization experts to fine-tune the parameters in the use of new data, a new chromosomal structure is proposed to automatically extract the optimal NN architecture, the number of layers and neurons. The goal is to increase the reusability of the model and ease of use by health experts.Results: To evaluate the performance of the model, two standard breast cancer (BC) datasets, WBC and WDBC, were used. The model uses 70% of the data set for training and the remaining equally used for evaluation and testing. The test accuracy of the proposed model on WBC and WDBC datasets was 98.51 and 97.55%, respectively. The optimal NN architecture on WBC consisted a three-hidden layers with 18, 15 and 19 neurons in each layers, and on WDBC consisted one hidden layer with a single neuron.Conclusion: The proposed chromosomal structure is able to derive optimal NN architecture. In according to the high classification accuracy of the model in the diagnosis of BC and providing the different architectures in accordance with the hardware implementation considerations, the proposed model can be used effectively in the diagnosis of other diseases.\",\"PeriodicalId\":154611,\"journal\":{\"name\":\"Frontiers in Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/fhi.v11i1.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/fhi.v11i1.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导语:人工智能正在改变许多高风险环境或医疗设施差的地区提供医疗保健的方式。流行病和新疾病的出现,以及早期诊断在预防和采用更有效治疗方面的关键作用,突出了准确设计和自组织临床决策支持系统(cdss)的必要性。材料与方法:本研究提出了一种基于神经网络和遗传算法的CDSS。由于神经网络(NN)的性能一方面高度依赖于其参数,另一方面,优化专家在使用新数据时需要不断微调参数,因此提出了一种新的染色体结构来自动提取最优的NN结构、层数和神经元数。其目标是提高模型的可重用性和卫生专家使用的便利性。结果:为了评估模型的性能,使用了两个标准的乳腺癌(BC)数据集,WBC和WDBC。该模型使用70%的数据集进行训练,其余的平均用于评估和测试。该模型在WBC和WDBC数据集上的测试准确率分别为98.51和97.55%。WBC上的最优NN结构由3个隐含层组成,每个隐含层分别有18、15和19个神经元;WDBC上的最优NN结构由1个隐含层组成,每个隐含层包含1个神经元。结论:提出的染色体结构能够推导出最优的神经网络结构。由于该模型在BC诊断中的分类准确率较高,并根据硬件实现考虑提供了不同的体系结构,因此该模型可有效地用于其他疾病的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Decision Support System Based on Neural Network and Genetic Algorithm: Case Study of Breast Cancer
Introduction: Artificial intelligence has been changing the way healthcare has been provided in many high-risk environments or areas with poor healthcare facilities. The emergence of epidemics and new diseases, as well as the crucial role of early diagnosis in prevention and the adoption of more effective treatments have highlighted the need for accurate design and self-organization of Clinical Decision Support Systems (CDSSs).Material and Methods: In this study, a CDSS based on a neural networks (NN) and genetic algorithm is proposed. Since, on the one hand, the performance of the neural network (NN) is highly dependent on its parameters, and on the other hand, there is a constant need for optimization experts to fine-tune the parameters in the use of new data, a new chromosomal structure is proposed to automatically extract the optimal NN architecture, the number of layers and neurons. The goal is to increase the reusability of the model and ease of use by health experts.Results: To evaluate the performance of the model, two standard breast cancer (BC) datasets, WBC and WDBC, were used. The model uses 70% of the data set for training and the remaining equally used for evaluation and testing. The test accuracy of the proposed model on WBC and WDBC datasets was 98.51 and 97.55%, respectively. The optimal NN architecture on WBC consisted a three-hidden layers with 18, 15 and 19 neurons in each layers, and on WDBC consisted one hidden layer with a single neuron.Conclusion: The proposed chromosomal structure is able to derive optimal NN architecture. In according to the high classification accuracy of the model in the diagnosis of BC and providing the different architectures in accordance with the hardware implementation considerations, the proposed model can be used effectively in the diagnosis of other diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Self-Care Application for Rheumatoid Arthritis: Identifying Key Data Elements Effective use of electronic health records system for healthcare delivery in Ghana Predictive Modeling of COVID-19 Hospitalization Using Twenty Machine Learning Classification Algorithms on Cohort Data Development and Usability Evaluation of a Web-Based Health Information Technology Dashboard of Quality and Economic Indicators Potentially Highly Effective Drugs for COVID-19: Virtual Screening and Molecular Docking Study Through PyRx-Vina Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1