{"title":"RFexpress !-射频情绪识别在野外","authors":"M. Raja, S. Sigg","doi":"10.1109/PERCOMW.2017.7917516","DOIUrl":null,"url":null,"abstract":"We present RFexpress! the first-ever system to recognize emotion from body movements and gestures via Device-Free Activity Recognition (DFAR). We focus on the distinction between neutral and agitated states in realistic environments. In particular, the system is able to detect risky driving behaviour in a vehicular setting as well as spotting angry conversations in an indoor environment. In case studies with 8 and 5 subjects the system could achieve recognition accuracies of 82.9% and 64%. We study the effectiveness of DFAR emotion and activity recognition systems in real environments such as cafes, malls, outdoor and office spaces. We measure radio characteristics in these environments at different days and times and analyse the impact of variations in the Signal to Noise Ratio (SNR) on the accuracy of DFAR emotion and activity recognition. In a case study with 5 subjects, we then find critical SNR values under which activity and emotion recognition results are no longer reliable.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"RFexpress! - RF emotion recognition in the wild\",\"authors\":\"M. Raja, S. Sigg\",\"doi\":\"10.1109/PERCOMW.2017.7917516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present RFexpress! the first-ever system to recognize emotion from body movements and gestures via Device-Free Activity Recognition (DFAR). We focus on the distinction between neutral and agitated states in realistic environments. In particular, the system is able to detect risky driving behaviour in a vehicular setting as well as spotting angry conversations in an indoor environment. In case studies with 8 and 5 subjects the system could achieve recognition accuracies of 82.9% and 64%. We study the effectiveness of DFAR emotion and activity recognition systems in real environments such as cafes, malls, outdoor and office spaces. We measure radio characteristics in these environments at different days and times and analyse the impact of variations in the Signal to Noise Ratio (SNR) on the accuracy of DFAR emotion and activity recognition. In a case study with 5 subjects, we then find critical SNR values under which activity and emotion recognition results are no longer reliable.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提供RFexpress!这是第一个通过无设备活动识别(DFAR)从身体动作和手势中识别情感的系统。我们关注现实环境中中性状态和激动状态的区别。特别是,该系统能够检测车辆环境中的危险驾驶行为,以及发现室内环境中的愤怒对话。在8个受试者和5个受试者的案例中,系统的识别准确率分别达到82.9%和64%。我们研究了DFAR情绪和活动识别系统在咖啡馆、商场、户外和办公空间等真实环境中的有效性。我们在这些环境中测量了不同日期和时间的无线电特性,并分析了信噪比(SNR)变化对DFAR情绪和活动识别准确性的影响。在一个有5名受试者的案例研究中,我们发现在关键的信噪比值下,活动和情绪识别结果不再可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RFexpress! - RF emotion recognition in the wild
We present RFexpress! the first-ever system to recognize emotion from body movements and gestures via Device-Free Activity Recognition (DFAR). We focus on the distinction between neutral and agitated states in realistic environments. In particular, the system is able to detect risky driving behaviour in a vehicular setting as well as spotting angry conversations in an indoor environment. In case studies with 8 and 5 subjects the system could achieve recognition accuracies of 82.9% and 64%. We study the effectiveness of DFAR emotion and activity recognition systems in real environments such as cafes, malls, outdoor and office spaces. We measure radio characteristics in these environments at different days and times and analyse the impact of variations in the Signal to Noise Ratio (SNR) on the accuracy of DFAR emotion and activity recognition. In a case study with 5 subjects, we then find critical SNR values under which activity and emotion recognition results are no longer reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1