更多,更快:使用统计标记器加速语料库注释

Arne Skjærholt
{"title":"更多,更快:使用统计标记器加速语料库注释","authors":"Arne Skjærholt","doi":"10.21248/jlcl.26.2011.154","DOIUrl":null,"url":null,"abstract":"We present our experiments with annotating a Latin corpus using an assisted annotation procedure where the corpus to be annotated is preannotated by a statistical tagger. This assisted procedure gives a notable reduction in annotator error compared to the unassisted annotation of previous annotation efforts, even with a huge tagset (1 000 tags) and modest tagger accuracy due to limited training data and domain effects.","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"More, Faster: Accelerated Corpus Annotation with Statistical Taggers\",\"authors\":\"Arne Skjærholt\",\"doi\":\"10.21248/jlcl.26.2011.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our experiments with annotating a Latin corpus using an assisted annotation procedure where the corpus to be annotated is preannotated by a statistical tagger. This assisted procedure gives a notable reduction in annotator error compared to the unassisted annotation of previous annotation efforts, even with a huge tagset (1 000 tags) and modest tagger accuracy due to limited training data and domain effects.\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.26.2011.154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.26.2011.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了使用辅助注释程序注释拉丁文语料库的实验,其中要注释的语料库由统计标记器预先注释。与以前的注释工作的无辅助注释相比,这种辅助过程显着减少了注释器错误,即使使用巨大的标签集(1000个标签)和由于有限的训练数据和域效应而导致的标记器准确性不高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
More, Faster: Accelerated Corpus Annotation with Statistical Taggers
We present our experiments with annotating a Latin corpus using an assisted annotation procedure where the corpus to be annotated is preannotated by a statistical tagger. This assisted procedure gives a notable reduction in annotator error compared to the unassisted annotation of previous annotation efforts, even with a huge tagset (1 000 tags) and modest tagger accuracy due to limited training data and domain effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aufbau eines Referenzkorpus zur deutschsprachigen internetbasierten Kommunikation als Zusatzkomponente für die Korpora im Projekt 'Digitales Wörterbuch der deutschen Sprache' (DWDS) Crowdsourcing the OCR Ground Truth of a German and French Cultural Heritage Corpus Comparison of OCR Accuracy on Early Printed Books using the Open Source Engines Calamari and OCRopus Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin Supervised OCR Error Detection and Correction Using Statistical and Neural Machine Translation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1