基于连通性的软件定义车辆网络雾结构管理

Penghan Yan, R. Meneguette, R. E. Grande
{"title":"基于连通性的软件定义车辆网络雾结构管理","authors":"Penghan Yan, R. Meneguette, R. E. Grande","doi":"10.1109/LATINCOM56090.2022.10000541","DOIUrl":null,"url":null,"abstract":"Vehicle Fog computing combines intelligent and connected vehicles to form a mobile cloud. Several works have modelled link stability for data delivery in light of solving the issues originating from unstable vehicle connectivity. However, results have shown that some mobility patterns potentially misguide the uncertainty-based estimation process. We thus propose a region-based connectivity ranking strategy. A fog management approach dynamically defines and supervises regions delimited by vehicles; such regions are mapped over an urban centre. In addition, the model develops a software-defined vehicular network (SDVN) controller to select data from the vehicular heterogeneous network environment through V2X and C-V2X. Our model admits four parameters to describe vehicular connectivity, which evaluates vehicles’ potential for communication and performs dynamic vehicular clustering. The 5G and DSRC heterogeneous networks support a more precise connectivity model for vehicular classification. Simulated analyses allow observing vehicular mobility and connectivity data in real-time scenarios where the management efficiency of vehicular fog regions is assessed in SDVN context.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity-based Fog Structure Management for Software-defined Vehicular Networks\",\"authors\":\"Penghan Yan, R. Meneguette, R. E. Grande\",\"doi\":\"10.1109/LATINCOM56090.2022.10000541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle Fog computing combines intelligent and connected vehicles to form a mobile cloud. Several works have modelled link stability for data delivery in light of solving the issues originating from unstable vehicle connectivity. However, results have shown that some mobility patterns potentially misguide the uncertainty-based estimation process. We thus propose a region-based connectivity ranking strategy. A fog management approach dynamically defines and supervises regions delimited by vehicles; such regions are mapped over an urban centre. In addition, the model develops a software-defined vehicular network (SDVN) controller to select data from the vehicular heterogeneous network environment through V2X and C-V2X. Our model admits four parameters to describe vehicular connectivity, which evaluates vehicles’ potential for communication and performs dynamic vehicular clustering. The 5G and DSRC heterogeneous networks support a more precise connectivity model for vehicular classification. Simulated analyses allow observing vehicular mobility and connectivity data in real-time scenarios where the management efficiency of vehicular fog regions is assessed in SDVN context.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车雾计算将智能汽车和网联汽车结合在一起,形成移动云。为了解决由车辆连接不稳定引起的问题,一些工作已经对数据传输的链路稳定性进行了建模。然而,结果表明,一些流动性模式可能会误导基于不确定性的估计过程。因此,我们提出了一种基于区域的连通性排序策略。雾管理方法动态定义和监督车辆划定的区域;这些区域被绘制在城市中心的地图上。此外,该模型还开发了软件定义车辆网络(SDVN)控制器,通过V2X和C-V2X从车辆异构网络环境中选择数据。该模型采用四个参数来描述车辆的连通性,评估车辆的通信潜力并执行动态车辆聚类。5G和DSRC异构网络支持更精确的车辆分类连接模型。模拟分析允许在实时场景中观察车辆移动性和连接数据,并在SDVN环境中评估车辆雾区的管理效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connectivity-based Fog Structure Management for Software-defined Vehicular Networks
Vehicle Fog computing combines intelligent and connected vehicles to form a mobile cloud. Several works have modelled link stability for data delivery in light of solving the issues originating from unstable vehicle connectivity. However, results have shown that some mobility patterns potentially misguide the uncertainty-based estimation process. We thus propose a region-based connectivity ranking strategy. A fog management approach dynamically defines and supervises regions delimited by vehicles; such regions are mapped over an urban centre. In addition, the model develops a software-defined vehicular network (SDVN) controller to select data from the vehicular heterogeneous network environment through V2X and C-V2X. Our model admits four parameters to describe vehicular connectivity, which evaluates vehicles’ potential for communication and performs dynamic vehicular clustering. The 5G and DSRC heterogeneous networks support a more precise connectivity model for vehicular classification. Simulated analyses allow observing vehicular mobility and connectivity data in real-time scenarios where the management efficiency of vehicular fog regions is assessed in SDVN context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1