幼儿肺炎病例及其影响因素的稳健时空分析

M. Musdalifah, S. Siswanto, N. Ilyas
{"title":"幼儿肺炎病例及其影响因素的稳健时空分析","authors":"M. Musdalifah, S. Siswanto, N. Ilyas","doi":"10.30812/varian.v6i2.2599","DOIUrl":null,"url":null,"abstract":"Pneumonia is a disease that causes inflammation of the lungs and is one of the most common diseases infecting toddlers. As a directly infectious disease, there is a possibility of the influence of location diversity on the number of pneumonia sufferers. Robust Geographically and Temporally Weighted Regression (RGTWR) is a method used to model data by considering the heterogeneity of location and time and to overcome outliers in the data. The data used is the number of pneumonia sufferers aged under five and the factors that are thought to influence it, namely the number of health centers, population density, percentage of children under five with complete basic immunizations, percentage of children under five who are exclusively breastfed 0-6 months, and percentage of poor people. This study was conducted to model pneumonia sufferers under five and to find out the factors that significantly affect the number of sufferers in each observation. RGTWR produces an optimal model with an R2 value of 99.9997%, a Mean Absolute Deviation of 21.6852, and a Median Absolute Deviation of 6.9661 compared to the Geographically and Temporally Weighted Regression model. Variables number of puskesmas, percentage of infants with complete basic immunization, and percentage of poor population are factors that influence the number of pneumonia sufferers under five in most locations in 34 provinces and 5 years of observation.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Spatial-Temporal Analysis of Toddler Pneumonia Cases and its Influencing Factors\",\"authors\":\"M. Musdalifah, S. Siswanto, N. Ilyas\",\"doi\":\"10.30812/varian.v6i2.2599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is a disease that causes inflammation of the lungs and is one of the most common diseases infecting toddlers. As a directly infectious disease, there is a possibility of the influence of location diversity on the number of pneumonia sufferers. Robust Geographically and Temporally Weighted Regression (RGTWR) is a method used to model data by considering the heterogeneity of location and time and to overcome outliers in the data. The data used is the number of pneumonia sufferers aged under five and the factors that are thought to influence it, namely the number of health centers, population density, percentage of children under five with complete basic immunizations, percentage of children under five who are exclusively breastfed 0-6 months, and percentage of poor people. This study was conducted to model pneumonia sufferers under five and to find out the factors that significantly affect the number of sufferers in each observation. RGTWR produces an optimal model with an R2 value of 99.9997%, a Mean Absolute Deviation of 21.6852, and a Median Absolute Deviation of 6.9661 compared to the Geographically and Temporally Weighted Regression model. Variables number of puskesmas, percentage of infants with complete basic immunization, and percentage of poor population are factors that influence the number of pneumonia sufferers under five in most locations in 34 provinces and 5 years of observation.\",\"PeriodicalId\":188119,\"journal\":{\"name\":\"Jurnal Varian\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Varian\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/varian.v6i2.2599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/varian.v6i2.2599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺炎是一种引起肺部炎症的疾病,是感染幼儿的最常见疾病之一。肺炎作为一种直接感染性疾病,存在地域多样性对患者人数影响的可能。鲁棒地理和时间加权回归(RGTWR)是一种考虑位置和时间异质性的数据建模方法,用于克服数据中的异常值。所使用的数据是5岁以下肺炎患者的人数以及被认为影响这一人数的因素,即保健中心的数量、人口密度、获得完全基本免疫的5岁以下儿童的百分比、0-6个月纯母乳喂养的5岁以下儿童的百分比以及穷人的百分比。本研究对五岁以下的肺炎患者进行建模,并在每次观察中找出显著影响患者数量的因素。与地理时间加权回归模型相比,RGTWR模型的R2值为99.9997%,Mean Absolute Deviation为21.6852,Median Absolute Deviation为6.9661。在34个省的大多数地区和5年的观察中,puskesmas数、获得完全基本免疫的婴儿百分比和贫困人口百分比是影响5岁以下肺炎患者人数的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Spatial-Temporal Analysis of Toddler Pneumonia Cases and its Influencing Factors
Pneumonia is a disease that causes inflammation of the lungs and is one of the most common diseases infecting toddlers. As a directly infectious disease, there is a possibility of the influence of location diversity on the number of pneumonia sufferers. Robust Geographically and Temporally Weighted Regression (RGTWR) is a method used to model data by considering the heterogeneity of location and time and to overcome outliers in the data. The data used is the number of pneumonia sufferers aged under five and the factors that are thought to influence it, namely the number of health centers, population density, percentage of children under five with complete basic immunizations, percentage of children under five who are exclusively breastfed 0-6 months, and percentage of poor people. This study was conducted to model pneumonia sufferers under five and to find out the factors that significantly affect the number of sufferers in each observation. RGTWR produces an optimal model with an R2 value of 99.9997%, a Mean Absolute Deviation of 21.6852, and a Median Absolute Deviation of 6.9661 compared to the Geographically and Temporally Weighted Regression model. Variables number of puskesmas, percentage of infants with complete basic immunization, and percentage of poor population are factors that influence the number of pneumonia sufferers under five in most locations in 34 provinces and 5 years of observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index Impact of SST Anomalies on Coral Reefs Damage Based on Copula Analysis The NADI Mathematical Model on the Danger Level of the Bili-Bili Dam Regression Model of Land Area and Amount of Production to the Selling Price of Corn K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1