Tarek El Salti, E. Sykes, Javier Nievas, Chen Tong
{"title":"针对COVID-19肺炎患者的新型低成本、准确诊断移动医疗系统","authors":"Tarek El Salti, E. Sykes, Javier Nievas, Chen Tong","doi":"10.1109/ICDH55609.2022.00027","DOIUrl":null,"url":null,"abstract":"Over the last two years, COVID-19 pneumonia has killed more than six million people worldwide. To self-triage pneumonia patients, many mobile Health (mHealth) solutions have been developed. Some of these solutions only provide guidelines and trace outbreaks. Others collect inaccurate vitals and/or are considered costly. To address these challenges, a cost-effective and accurate mHealth system was designed in this paper. The system consists of several biosensors (e.g., oxygen saturation) as they are considered significant for the disease assessment. In addition, a new mobile application was developed to collect biometric vitals and transmit them to a HIPPA compliant server. Our real-world experiments demonstrated that the new system was strongly correlated with the gold standard systems in terms of pulse rate and temperature (e.g., 90%). Moreover, the difference in the rate of change between the two systems for the measurements were mostly insignificant (e.g., $p-\\text{value} \\approx 0.77$). Lastly, the prototype cost is approximately $20 USD.","PeriodicalId":120923,"journal":{"name":"2022 IEEE International Conference on Digital Health (ICDH)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Low-Cost and Accurate Diagnostic mHealth System for Patients with COVID-19 Pneumonia\",\"authors\":\"Tarek El Salti, E. Sykes, Javier Nievas, Chen Tong\",\"doi\":\"10.1109/ICDH55609.2022.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last two years, COVID-19 pneumonia has killed more than six million people worldwide. To self-triage pneumonia patients, many mobile Health (mHealth) solutions have been developed. Some of these solutions only provide guidelines and trace outbreaks. Others collect inaccurate vitals and/or are considered costly. To address these challenges, a cost-effective and accurate mHealth system was designed in this paper. The system consists of several biosensors (e.g., oxygen saturation) as they are considered significant for the disease assessment. In addition, a new mobile application was developed to collect biometric vitals and transmit them to a HIPPA compliant server. Our real-world experiments demonstrated that the new system was strongly correlated with the gold standard systems in terms of pulse rate and temperature (e.g., 90%). Moreover, the difference in the rate of change between the two systems for the measurements were mostly insignificant (e.g., $p-\\\\text{value} \\\\approx 0.77$). Lastly, the prototype cost is approximately $20 USD.\",\"PeriodicalId\":120923,\"journal\":{\"name\":\"2022 IEEE International Conference on Digital Health (ICDH)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Digital Health (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH55609.2022.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH55609.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Low-Cost and Accurate Diagnostic mHealth System for Patients with COVID-19 Pneumonia
Over the last two years, COVID-19 pneumonia has killed more than six million people worldwide. To self-triage pneumonia patients, many mobile Health (mHealth) solutions have been developed. Some of these solutions only provide guidelines and trace outbreaks. Others collect inaccurate vitals and/or are considered costly. To address these challenges, a cost-effective and accurate mHealth system was designed in this paper. The system consists of several biosensors (e.g., oxygen saturation) as they are considered significant for the disease assessment. In addition, a new mobile application was developed to collect biometric vitals and transmit them to a HIPPA compliant server. Our real-world experiments demonstrated that the new system was strongly correlated with the gold standard systems in terms of pulse rate and temperature (e.g., 90%). Moreover, the difference in the rate of change between the two systems for the measurements were mostly insignificant (e.g., $p-\text{value} \approx 0.77$). Lastly, the prototype cost is approximately $20 USD.