基于掩模R-CNN的卫星分量识别改进轻量化模型

Jiabing Chen, Lei Wei, Gaopeng Zhao
{"title":"基于掩模R-CNN的卫星分量识别改进轻量化模型","authors":"Jiabing Chen, Lei Wei, Gaopeng Zhao","doi":"10.1109/IAI50351.2020.9262224","DOIUrl":null,"url":null,"abstract":"Satellite component recognition has always been a hot topic in the field of orbital services. However, it is very challenging to segment the components such as satellite body, solar panel, and antenna in pixel-level accurately due to the poor illumination condition and the scarce image for spaceborne observation. Based on the Mask R-CNN, this paper proposes a lightweight instance segmentation model for satellite component segmentation and recognition. It improves residual module by using deep separable convolution, replacing nonlinear activation function with linear one after deep separable convolution and deleting the dimensionality reduction convolution layer in residual module. Also, the training datasets consist of the synthetic images generated by the 3D max software and the C-DCGAN based image generation method through several known satellite CAD models. The simulation experiments are carried out and the results show that the proposed method can effectively recognize the typical satellite components and achieve better performance than the compared model in aspects of accuracy, model parameters, and model size.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An improved lightweight model based on Mask R-CNN for satellite component recognition\",\"authors\":\"Jiabing Chen, Lei Wei, Gaopeng Zhao\",\"doi\":\"10.1109/IAI50351.2020.9262224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite component recognition has always been a hot topic in the field of orbital services. However, it is very challenging to segment the components such as satellite body, solar panel, and antenna in pixel-level accurately due to the poor illumination condition and the scarce image for spaceborne observation. Based on the Mask R-CNN, this paper proposes a lightweight instance segmentation model for satellite component segmentation and recognition. It improves residual module by using deep separable convolution, replacing nonlinear activation function with linear one after deep separable convolution and deleting the dimensionality reduction convolution layer in residual module. Also, the training datasets consist of the synthetic images generated by the 3D max software and the C-DCGAN based image generation method through several known satellite CAD models. The simulation experiments are carried out and the results show that the proposed method can effectively recognize the typical satellite components and achieve better performance than the compared model in aspects of accuracy, model parameters, and model size.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

卫星组件识别一直是在轨服务领域的研究热点。然而,由于星载观测的光照条件差、图像稀缺,对卫星本体、太阳能电池板、天线等部件进行像素级精确分割是一个非常困难的问题。基于掩模R-CNN,提出了一种用于卫星部件分割与识别的轻量级实例分割模型。利用深度可分卷积改进残差模块,将深度可分卷积后的非线性激活函数替换为线性激活函数,并删除残差模块中的降维卷积层。训练数据集由3D max软件和基于C-DCGAN的图像生成方法通过几种已知的卫星CAD模型生成的合成图像组成。仿真实验结果表明,该方法能有效识别典型卫星部件,在精度、模型参数、模型尺寸等方面均优于对比模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved lightweight model based on Mask R-CNN for satellite component recognition
Satellite component recognition has always been a hot topic in the field of orbital services. However, it is very challenging to segment the components such as satellite body, solar panel, and antenna in pixel-level accurately due to the poor illumination condition and the scarce image for spaceborne observation. Based on the Mask R-CNN, this paper proposes a lightweight instance segmentation model for satellite component segmentation and recognition. It improves residual module by using deep separable convolution, replacing nonlinear activation function with linear one after deep separable convolution and deleting the dimensionality reduction convolution layer in residual module. Also, the training datasets consist of the synthetic images generated by the 3D max software and the C-DCGAN based image generation method through several known satellite CAD models. The simulation experiments are carried out and the results show that the proposed method can effectively recognize the typical satellite components and achieve better performance than the compared model in aspects of accuracy, model parameters, and model size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine An Intelligent Fault Classification Method Based on Data-Driven Stability Margin Real-time Wind Estimation with a Quadrotor using BP Neural Network Hybrid Neural Network Based on GRU with Uncertain Factors for Forecasting Ultra-short-term Wind Power Research on the mechanism and network model of China's public cultural service in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1