Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin
{"title":"一种基于收缩内存计算阵列的时空卷积预测早期激活加速器","authors":"Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin","doi":"10.1109/AICAS57966.2023.10168581","DOIUrl":null,"url":null,"abstract":"Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systolic Computing-in-Memory Array based Accelerator with Predictive Early Activation for Spatiotemporal Convolutions\",\"authors\":\"Xiaofeng Chen, Ruiqi Guo, Zhiheng Yue, Yang Hu, Leibo Liu, Shaojun Wei, S. Yin\",\"doi\":\"10.1109/AICAS57966.2023.10168581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Systolic Computing-in-Memory Array based Accelerator with Predictive Early Activation for Spatiotemporal Convolutions
Residual (2+1)-dimensional convolution neural network (R(2+1)D CNN) has achieved great success in video recognition due to the spatiotemporal convolution structure. However, R(2+1)D CNN incurs large energy and latency overhead because of intensive computation and frequent memory access. To solve the issues, we propose a digital SRAM-CIM based accelerator with two key features: (1) Systolic CIM array to efficiently match massive computations in regular architecture; (2) Digtal CIM circuit design with output sparsity predicition to avoid redundant computations. The proposed design is implemented in 28nm technology and achieves an energy efficiency of 21.87 TOPS/W at 200 MHz and 0.9 V supply voltage.