{"title":"有机物质和pH对滴滴涕水溶性的影响","authors":"K. Haarstad, Marianne Fresvig","doi":"10.1080/10588330091134293","DOIUrl":null,"url":null,"abstract":"We have studied the concentrations of DDT in ground water samples at field locations with DDT-polluted topsoil and concentrations and solubility in samples prepared from deionized water with different types and concentration of organic acids. The solubility of DDT increased with increasing concentration of humic acid when the pH of the samples was low (adjusted to about 5.5). The effect flutters in the humic acid concentration range from 200 to 300 mg/L, in accordance with humic acid hydrophobicity, operationally measured as liquid surface tension. The findings correspond to trends previously reported in the literature. The trend of increasing solubility was not found using fulvic acid or low-molecular-weight aliphatic acids. No trend was found adding humic acid without adjusting the pH. The mechanism of enhanced solubility due to humic compounds can explain relatively high levels of DDT in ground water. The ground water samples, however, had a moderately high concentration of maximum 6 µg/L compared with a maximum of about 2300 µg/L in the water samples with humic acid in pure water.","PeriodicalId":433778,"journal":{"name":"Journal of Soil Contamination","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Influence of Organic Matter and pH on DDT Aqueous Solubility\",\"authors\":\"K. Haarstad, Marianne Fresvig\",\"doi\":\"10.1080/10588330091134293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have studied the concentrations of DDT in ground water samples at field locations with DDT-polluted topsoil and concentrations and solubility in samples prepared from deionized water with different types and concentration of organic acids. The solubility of DDT increased with increasing concentration of humic acid when the pH of the samples was low (adjusted to about 5.5). The effect flutters in the humic acid concentration range from 200 to 300 mg/L, in accordance with humic acid hydrophobicity, operationally measured as liquid surface tension. The findings correspond to trends previously reported in the literature. The trend of increasing solubility was not found using fulvic acid or low-molecular-weight aliphatic acids. No trend was found adding humic acid without adjusting the pH. The mechanism of enhanced solubility due to humic compounds can explain relatively high levels of DDT in ground water. The ground water samples, however, had a moderately high concentration of maximum 6 µg/L compared with a maximum of about 2300 µg/L in the water samples with humic acid in pure water.\",\"PeriodicalId\":433778,\"journal\":{\"name\":\"Journal of Soil Contamination\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Contamination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10588330091134293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Contamination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10588330091134293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of Organic Matter and pH on DDT Aqueous Solubility
We have studied the concentrations of DDT in ground water samples at field locations with DDT-polluted topsoil and concentrations and solubility in samples prepared from deionized water with different types and concentration of organic acids. The solubility of DDT increased with increasing concentration of humic acid when the pH of the samples was low (adjusted to about 5.5). The effect flutters in the humic acid concentration range from 200 to 300 mg/L, in accordance with humic acid hydrophobicity, operationally measured as liquid surface tension. The findings correspond to trends previously reported in the literature. The trend of increasing solubility was not found using fulvic acid or low-molecular-weight aliphatic acids. No trend was found adding humic acid without adjusting the pH. The mechanism of enhanced solubility due to humic compounds can explain relatively high levels of DDT in ground water. The ground water samples, however, had a moderately high concentration of maximum 6 µg/L compared with a maximum of about 2300 µg/L in the water samples with humic acid in pure water.