Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain
{"title":"使用先进机器学习算法的化验型检测","authors":"Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain","doi":"10.1109/SKIMA47702.2019.8982449","DOIUrl":null,"url":null,"abstract":"The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Assay Type Detection Using Advanced Machine Learning Algorithms\",\"authors\":\"Marzia Hoque Tania, Khin T. Lwin, A. Shabut, Kamal Abu-Hassan, M. S. Kaiser, M. A. Hossain\",\"doi\":\"10.1109/SKIMA47702.2019.8982449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.\",\"PeriodicalId\":245523,\"journal\":{\"name\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA47702.2019.8982449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assay Type Detection Using Advanced Machine Learning Algorithms
The colourimetric analysis has been used in diversified fields for years. This paper provides a unique overview of colourimetric tests from the perspective of computer vision by describing different aspects of a colourimetric test in the context of image processing, followed by an investigation into the development of a colorimetric assay type detection system using advanced machine learning algorithms. To the best of our knowledge, this is the first attempt to define colourimetric assay types from the eyes of a machine and perform any colorimetric test using deep learning. This investigation utilizes the state-of-the-art pre-trained models of Convolutional Neural Network (CNN) to perform the assay type detection of an enzyme-linked immunosorbent assay (ELISA) and lateral flow assay (LFA). The ELISA dataset contains images of both positive and negative samples, prepared for the plasmonic ELISA based TB-antigen specific antibody detection. The LFA dataset contains images of the universal pH indicator paper of eight pH levels. It is noted that the pre-trained models offered 100% accurate visual recognition for the assay type detection. Such detection can assist novice users to initiate a colorimetric test using his/her personal digital devices. The assay type detection can also aid in calibrating an image-based colorimetric classification.