基于脑电信号的双手运动多方向解码

Run Gao, Yingchi Liu, Jiarong Wang, Luzheng Bi
{"title":"基于脑电信号的双手运动多方向解码","authors":"Run Gao, Yingchi Liu, Jiarong Wang, Luzheng Bi","doi":"10.1109/RCAR54675.2022.9872187","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to decode the both-hand movement multi-direction based on electroencephalogram (EEG) signals. We use two kinds of decoding features, which are the potential amplitudes and power sums of EEG signals. One-versus-rest and decision tree are adopted as classification strategies, and linear discriminant analysis (LDA) classifier is used for classification. We apply an experimental paradigm to demonstrate the proposed method. The best four-class classification performance using the power sums of EEG signals with the one-versus-rest classification strategy is close to 70%. The experimental results show the feasibility of decoding both-hand movement multi-directions based on EEG signals. This work can promote the development of brain-computer interfaces for the assistance of hand-impaired patients.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Direction Decoding of Both-Hand Movement Using EEG Signals\",\"authors\":\"Run Gao, Yingchi Liu, Jiarong Wang, Luzheng Bi\",\"doi\":\"10.1109/RCAR54675.2022.9872187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to decode the both-hand movement multi-direction based on electroencephalogram (EEG) signals. We use two kinds of decoding features, which are the potential amplitudes and power sums of EEG signals. One-versus-rest and decision tree are adopted as classification strategies, and linear discriminant analysis (LDA) classifier is used for classification. We apply an experimental paradigm to demonstrate the proposed method. The best four-class classification performance using the power sums of EEG signals with the one-versus-rest classification strategy is close to 70%. The experimental results show the feasibility of decoding both-hand movement multi-directions based on EEG signals. This work can promote the development of brain-computer interfaces for the assistance of hand-impaired patients.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于脑电图信号的双手多方向运动解码方法。我们使用了两种解码特征,即脑电信号的电位和和功率。采用一对休息和决策树作为分类策略,使用线性判别分析(LDA)分类器进行分类。我们应用一个实验范例来证明所提出的方法。使用一对休息分类策略对脑电信号功率和进行四类分类的最佳分类性能接近70%。实验结果表明,基于脑电信号的双手运动多方向解码是可行的。这项工作可以促进脑机接口的发展,以帮助手障患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Direction Decoding of Both-Hand Movement Using EEG Signals
In this paper, we propose a method to decode the both-hand movement multi-direction based on electroencephalogram (EEG) signals. We use two kinds of decoding features, which are the potential amplitudes and power sums of EEG signals. One-versus-rest and decision tree are adopted as classification strategies, and linear discriminant analysis (LDA) classifier is used for classification. We apply an experimental paradigm to demonstrate the proposed method. The best four-class classification performance using the power sums of EEG signals with the one-versus-rest classification strategy is close to 70%. The experimental results show the feasibility of decoding both-hand movement multi-directions based on EEG signals. This work can promote the development of brain-computer interfaces for the assistance of hand-impaired patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth Recognition of Hard Inclusions in Tissue Phantoms for Robotic Palpation Design of a Miniaturized Magnetic Actuation System for Motion Control of Micro/Nano Swimming Robots Energy Shaping Based Nonlinear Anti-Swing Controller for Double-Pendulum Rotary Crane with Distributed-Mass Beams RCAR 2022 Cover Page Design and Implementation of Robot Middleware Service Integration Framework Based on DDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1