基于PCA和特征脸的说话人识别系统

Md. Rashedul Islam, M. S. Azam, Saleh Ahmed
{"title":"基于PCA和特征脸的说话人识别系统","authors":"Md. Rashedul Islam, M. S. Azam, Saleh Ahmed","doi":"10.1109/ICCIT.2009.5407129","DOIUrl":null,"url":null,"abstract":"This paper presents a speech-based speaker identification system and an efficient approach for selection of acoustic parameters closely related to the vocal track shape of the speaker. Speech endpoint detection algorithm is developed in order to discard the room noise and non-speech signal to achieve high accuracy of the system. Windowing and Fast Fourier Transform (FFT) are used to determine the spectrum of the speech signal and PCA has been used to extract feature of speech of individual speaker. Eigenface algorithm has been used here as a classification and recognation tool. Eigenspace of individual speaker is generated by the feature of the speech signal. The experimental results show the noticeable performance of the proposed system.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speaker identification system using PCA & eigenface\",\"authors\":\"Md. Rashedul Islam, M. S. Azam, Saleh Ahmed\",\"doi\":\"10.1109/ICCIT.2009.5407129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a speech-based speaker identification system and an efficient approach for selection of acoustic parameters closely related to the vocal track shape of the speaker. Speech endpoint detection algorithm is developed in order to discard the room noise and non-speech signal to achieve high accuracy of the system. Windowing and Fast Fourier Transform (FFT) are used to determine the spectrum of the speech signal and PCA has been used to extract feature of speech of individual speaker. Eigenface algorithm has been used here as a classification and recognation tool. Eigenspace of individual speaker is generated by the feature of the speech signal. The experimental results show the noticeable performance of the proposed system.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于语音的说话人识别系统,并提出了一种选择与说话人声道形状密切相关的声学参数的有效方法。语音端点检测算法是为了去除房间噪声和非语音信号,达到系统的高精度。利用加窗和快速傅里叶变换(FFT)确定语音信号的频谱,利用主成分分析(PCA)提取单个说话者的语音特征。特征脸算法在这里被用作分类和识别工具。单个说话人的特征空间是由语音信号的特征生成的。实验结果表明,该系统具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaker identification system using PCA & eigenface
This paper presents a speech-based speaker identification system and an efficient approach for selection of acoustic parameters closely related to the vocal track shape of the speaker. Speech endpoint detection algorithm is developed in order to discard the room noise and non-speech signal to achieve high accuracy of the system. Windowing and Fast Fourier Transform (FFT) are used to determine the spectrum of the speech signal and PCA has been used to extract feature of speech of individual speaker. Eigenface algorithm has been used here as a classification and recognation tool. Eigenspace of individual speaker is generated by the feature of the speech signal. The experimental results show the noticeable performance of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1