基于深度生成对手网络的智能配电系统状态估计

Kursat Rasim Mestav, L. Tong
{"title":"基于深度生成对手网络的智能配电系统状态估计","authors":"Kursat Rasim Mestav, L. Tong","doi":"10.1109/SmartGridComm.2019.8909752","DOIUrl":null,"url":null,"abstract":"The problem of distribution system state estimation using smart meters and limited SCADA (Supervisory Control and Data Acquisition) measurement units is considered. To overcome the lack of measurements, a Bayesian state estimator using deep learning is proposed. The proposed method consists of two steps. First, a deep generative adversary network is trained to learn the distribution of net power injections at the loads. Then, a deep regression network is trained using the samples generated from the generative network to obtain minimum mean-squared error (MMSE) estimate of the system state. Our simulation results show the accuracy and the online computation cost of the proposed method are superior to the conventional methods.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"State Estimation in Smart Distribution Systems with Deep Generative Adversary Networks\",\"authors\":\"Kursat Rasim Mestav, L. Tong\",\"doi\":\"10.1109/SmartGridComm.2019.8909752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of distribution system state estimation using smart meters and limited SCADA (Supervisory Control and Data Acquisition) measurement units is considered. To overcome the lack of measurements, a Bayesian state estimator using deep learning is proposed. The proposed method consists of two steps. First, a deep generative adversary network is trained to learn the distribution of net power injections at the loads. Then, a deep regression network is trained using the samples generated from the generative network to obtain minimum mean-squared error (MMSE) estimate of the system state. Our simulation results show the accuracy and the online computation cost of the proposed method are superior to the conventional methods.\",\"PeriodicalId\":377150,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"451 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2019.8909752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了利用智能电表和有限的SCADA (Supervisory Control and Data Acquisition)测量单元进行配电系统状态估计的问题。为了克服测量不足的问题,提出了一种基于深度学习的贝叶斯状态估计器。该方法分为两个步骤。首先,训练一个深度生成对手网络来学习负载下净功率注入的分布。然后,利用生成网络生成的样本对深度回归网络进行训练,得到系统状态的最小均方误差(MMSE)估计。仿真结果表明,该方法的精度和在线计算量均优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State Estimation in Smart Distribution Systems with Deep Generative Adversary Networks
The problem of distribution system state estimation using smart meters and limited SCADA (Supervisory Control and Data Acquisition) measurement units is considered. To overcome the lack of measurements, a Bayesian state estimator using deep learning is proposed. The proposed method consists of two steps. First, a deep generative adversary network is trained to learn the distribution of net power injections at the loads. Then, a deep regression network is trained using the samples generated from the generative network to obtain minimum mean-squared error (MMSE) estimate of the system state. Our simulation results show the accuracy and the online computation cost of the proposed method are superior to the conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Demand Response of Voltage-Dependent Loads for Corrective Grid De-Congestion MEED: An Unsupervised Multi-Environment Event Detector for Non-Intrusive Load Monitoring Traction substation power signal characteristics and transient power quality evaluation method Reliable Streaming and Synchronization of Smart Meter Data over Intermittent Data Connections Synthetic Power Line Communications Channel Generation with Autoencoders and GANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1