{"title":"通过双极化雷达查看非接触式旋转机器的健康状况","authors":"Jeremy Hershberger, T. Pratt, Robert D. Kossler","doi":"10.1109/WMCAS.2018.8400639","DOIUrl":null,"url":null,"abstract":"A dual-polarized radar is capable of characterizing a time-varying target and extracting its vibrational spectrum. This work details the concepts of that process in the context of remotely observing the health of multiple electric pumps at a local industrial plant. The efficacy of the approach is demonstrated through a small-scale experiment sensing different vibration signatures of an electric motor with a dual-polarized radar system.","PeriodicalId":254840,"journal":{"name":"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-contact rotating machine health status via dual-polarized radar\",\"authors\":\"Jeremy Hershberger, T. Pratt, Robert D. Kossler\",\"doi\":\"10.1109/WMCAS.2018.8400639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-polarized radar is capable of characterizing a time-varying target and extracting its vibrational spectrum. This work details the concepts of that process in the context of remotely observing the health of multiple electric pumps at a local industrial plant. The efficacy of the approach is demonstrated through a small-scale experiment sensing different vibration signatures of an electric motor with a dual-polarized radar system.\",\"PeriodicalId\":254840,\"journal\":{\"name\":\"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMCAS.2018.8400639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMCAS.2018.8400639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-contact rotating machine health status via dual-polarized radar
A dual-polarized radar is capable of characterizing a time-varying target and extracting its vibrational spectrum. This work details the concepts of that process in the context of remotely observing the health of multiple electric pumps at a local industrial plant. The efficacy of the approach is demonstrated through a small-scale experiment sensing different vibration signatures of an electric motor with a dual-polarized radar system.