基于语义问答系统的自动查询分析技术

Shrimai Prabhumoye, P. Rai, Loverose S. Sandhu, L. Priya, S. Kamath
{"title":"基于语义问答系统的自动查询分析技术","authors":"Shrimai Prabhumoye, P. Rai, Loverose S. Sandhu, L. Priya, S. Kamath","doi":"10.1109/ICRTIT.2014.6996128","DOIUrl":null,"url":null,"abstract":"Search engines have always played an important role in helping web users to rapidly find information on the Web. However, their function is limited to returning a list of query relevant documents with reasonably good precision, but huge recall. The task of actually processing the returned documents to get the required information is the responsibility of the user. In recent years, Question-Answer systems are gaining popularity and have garnered much research interest in view of the proposed Semantic Web and future availability of fully structured data. The advantage of QA systems is that users have the luxury of asking queries in natural language and also get a precise answer instead of just displaying a list of links to documents that may or may not be relevant. This paper presents a question answer search engine prototype that uses natural language processing, natural language generation, question classification and query logs to find a precise answer to the submitted query. This is ongoing work and we focus on the methodology of query analysis in this paper. We describe our strategy of automatic query analysis by classifying it into nine categories and understanding the meaning of the query. We also discuss in detail how each of the question categories are automatically processed and how the proposed system determines the key word or key phrase to be searched.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated query analysis techniques for semantics based question answering system\",\"authors\":\"Shrimai Prabhumoye, P. Rai, Loverose S. Sandhu, L. Priya, S. Kamath\",\"doi\":\"10.1109/ICRTIT.2014.6996128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search engines have always played an important role in helping web users to rapidly find information on the Web. However, their function is limited to returning a list of query relevant documents with reasonably good precision, but huge recall. The task of actually processing the returned documents to get the required information is the responsibility of the user. In recent years, Question-Answer systems are gaining popularity and have garnered much research interest in view of the proposed Semantic Web and future availability of fully structured data. The advantage of QA systems is that users have the luxury of asking queries in natural language and also get a precise answer instead of just displaying a list of links to documents that may or may not be relevant. This paper presents a question answer search engine prototype that uses natural language processing, natural language generation, question classification and query logs to find a precise answer to the submitted query. This is ongoing work and we focus on the methodology of query analysis in this paper. We describe our strategy of automatic query analysis by classifying it into nine categories and understanding the meaning of the query. We also discuss in detail how each of the question categories are automatically processed and how the proposed system determines the key word or key phrase to be searched.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

搜索引擎在帮助网络用户快速查找网络信息方面一直扮演着重要的角色。然而,它们的功能仅限于返回查询相关文档的列表,具有相当好的精度,但召回率很高。实际处理返回的文档以获取所需信息的任务是用户的责任。近年来,问答系统越来越受欢迎,并且在提出的语义网和未来完全结构化数据的可用性方面获得了许多研究兴趣。QA系统的优势在于,用户可以用自然语言提出问题,并得到精确的答案,而不仅仅是显示一列指向可能相关也可能不相关的文档的链接。本文提出了一个问答搜索引擎原型,利用自然语言处理、自然语言生成、问题分类和查询日志对提交的查询找到精确的答案。这是一项正在进行的工作,我们在本文中关注查询分析的方法。我们通过将查询分为九类并理解查询的含义来描述我们的自动查询分析策略。我们还详细讨论了如何自动处理每个问题类别,以及拟议的系统如何确定要搜索的关键字或关键短语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated query analysis techniques for semantics based question answering system
Search engines have always played an important role in helping web users to rapidly find information on the Web. However, their function is limited to returning a list of query relevant documents with reasonably good precision, but huge recall. The task of actually processing the returned documents to get the required information is the responsibility of the user. In recent years, Question-Answer systems are gaining popularity and have garnered much research interest in view of the proposed Semantic Web and future availability of fully structured data. The advantage of QA systems is that users have the luxury of asking queries in natural language and also get a precise answer instead of just displaying a list of links to documents that may or may not be relevant. This paper presents a question answer search engine prototype that uses natural language processing, natural language generation, question classification and query logs to find a precise answer to the submitted query. This is ongoing work and we focus on the methodology of query analysis in this paper. We describe our strategy of automatic query analysis by classifying it into nine categories and understanding the meaning of the query. We also discuss in detail how each of the question categories are automatically processed and how the proposed system determines the key word or key phrase to be searched.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DigiCloud: Scrutinizing apt service for coping with confidential control over utility practice Effect of multi-word features on the hierarchical clustering of web documents Efficient fingerprint lookup using Prefix Indexing Tablet An image encryption using chaotic permutation and diffusion Efficient design of different forms of FIR filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1