人工智能助手通过创建的电子听诊器心音检测心脏病的现代方法

Sadman Jahin, Md Moniruzzaman, Fahmeed Mahmud Alvee, Inzamum Ul Haque, K. Kalpoma
{"title":"人工智能助手通过创建的电子听诊器心音检测心脏病的现代方法","authors":"Sadman Jahin, Md Moniruzzaman, Fahmeed Mahmud Alvee, Inzamum Ul Haque, K. Kalpoma","doi":"10.1109/ICCIT57492.2022.10055366","DOIUrl":null,"url":null,"abstract":"In this work, first, we created an electronic stethoscope (e-Stethoscope) of very low cost that converts the acoustic sound waves obtained through the chest piece into electrical signals and can amplify heart murmurs and noises created by the heart valves. This paper presents an effective way of predicting heart diseases based on heart sounds produced by this e-stethoscope. Our prediction system collects heart sounds from patients using this e-stethoscope and then analyzes them to predict the disease by running various Machine-learning and Deep-learning models like KNN, SVM, Decision Tree, Random Forest, MLP Classifier, ANN, 1D CNN, 2D CNN, etc. We analyzed the results through the 3 datasets, Physionet, Pascal, and Our Collected Heart Dataset. MLP classifier and ANN both performed well on our dataset. A modern heart sound database platform is developed to impact the telemedicine sector worldwide. This telemedicine service may help to cut costs and travel time massively.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modern Approach to AI Assistant for Heart Disease Detection by Heart Sound through created e-Stethoscope\",\"authors\":\"Sadman Jahin, Md Moniruzzaman, Fahmeed Mahmud Alvee, Inzamum Ul Haque, K. Kalpoma\",\"doi\":\"10.1109/ICCIT57492.2022.10055366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, first, we created an electronic stethoscope (e-Stethoscope) of very low cost that converts the acoustic sound waves obtained through the chest piece into electrical signals and can amplify heart murmurs and noises created by the heart valves. This paper presents an effective way of predicting heart diseases based on heart sounds produced by this e-stethoscope. Our prediction system collects heart sounds from patients using this e-stethoscope and then analyzes them to predict the disease by running various Machine-learning and Deep-learning models like KNN, SVM, Decision Tree, Random Forest, MLP Classifier, ANN, 1D CNN, 2D CNN, etc. We analyzed the results through the 3 datasets, Physionet, Pascal, and Our Collected Heart Dataset. MLP classifier and ANN both performed well on our dataset. A modern heart sound database platform is developed to impact the telemedicine sector worldwide. This telemedicine service may help to cut costs and travel time massively.\",\"PeriodicalId\":255498,\"journal\":{\"name\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT57492.2022.10055366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10055366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,首先,我们制造了一种非常低成本的电子听诊器(e-Stethoscope),它将通过胸片获得的声波转换为电信号,并可以放大心脏杂音和心脏瓣膜产生的噪音。本文提出了一种基于电子听诊器产生的心音预测心脏病的有效方法。我们的预测系统从使用该电子听诊器的患者收集心音,然后通过运行KNN、SVM、决策树、随机森林、MLP分类器、ANN、1D CNN、2D CNN等各种机器学习和深度学习模型对其进行分析,从而预测疾病。我们通过三个数据集(Physionet, Pascal和Our Collected Heart Dataset)分析结果。MLP分类器和人工神经网络在我们的数据集上都表现良好。开发了一个现代心音数据库平台,以影响全球的远程医疗部门。这种远程医疗服务可能有助于大幅削减成本和旅行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modern Approach to AI Assistant for Heart Disease Detection by Heart Sound through created e-Stethoscope
In this work, first, we created an electronic stethoscope (e-Stethoscope) of very low cost that converts the acoustic sound waves obtained through the chest piece into electrical signals and can amplify heart murmurs and noises created by the heart valves. This paper presents an effective way of predicting heart diseases based on heart sounds produced by this e-stethoscope. Our prediction system collects heart sounds from patients using this e-stethoscope and then analyzes them to predict the disease by running various Machine-learning and Deep-learning models like KNN, SVM, Decision Tree, Random Forest, MLP Classifier, ANN, 1D CNN, 2D CNN, etc. We analyzed the results through the 3 datasets, Physionet, Pascal, and Our Collected Heart Dataset. MLP classifier and ANN both performed well on our dataset. A modern heart sound database platform is developed to impact the telemedicine sector worldwide. This telemedicine service may help to cut costs and travel time massively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SlotFinder: A Spatio-temporal based Car Parking System Land Cover and Land Use Detection using Semi-Supervised Learning Comparative Analysis of Process Scheduling Algorithm using AI models Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme Towards Developing a Voice-Over-Guided System for Visually Impaired People to Learn Writing the Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1