盲亚奈奎斯特GNSS信号检测

Ondrej Daniel, J. Raasakka, Pekka Peltola, Markus Fröhle, A. Rodriguez, H. Wymeersch, J. Nurmi
{"title":"盲亚奈奎斯特GNSS信号检测","authors":"Ondrej Daniel, J. Raasakka, Pekka Peltola, Markus Fröhle, A. Rodriguez, H. Wymeersch, J. Nurmi","doi":"10.1109/ICASSP.2016.7472944","DOIUrl":null,"url":null,"abstract":"A satellite navigation receiver traditionally searches for positioning signals using an acquisition procedure. In situations, in which the required information is only a binary decision whether at least one positioning signal is present or absent, the procedure represents an unnecessarily complex solution. This paper presents a different approach for the binary detection problem with significantly reduced computational complexity. The approach is based on a novel decision metric which is utilized to design two binary detectors. The first detector operates under the theoretical assumption of additive white Gaussian noise and is evaluated by means of Receiver Operating Characteristics. The second one considers also additional interferences and is suitable to operate in a real environment. Its performance is verified using a signal captured by a receiver front-end.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blind sub-Nyquist GNSS signal detection\",\"authors\":\"Ondrej Daniel, J. Raasakka, Pekka Peltola, Markus Fröhle, A. Rodriguez, H. Wymeersch, J. Nurmi\",\"doi\":\"10.1109/ICASSP.2016.7472944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A satellite navigation receiver traditionally searches for positioning signals using an acquisition procedure. In situations, in which the required information is only a binary decision whether at least one positioning signal is present or absent, the procedure represents an unnecessarily complex solution. This paper presents a different approach for the binary detection problem with significantly reduced computational complexity. The approach is based on a novel decision metric which is utilized to design two binary detectors. The first detector operates under the theoretical assumption of additive white Gaussian noise and is evaluated by means of Receiver Operating Characteristics. The second one considers also additional interferences and is suitable to operate in a real environment. Its performance is verified using a signal captured by a receiver front-end.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统上,卫星导航接收机使用采集程序搜索定位信号。如果所需要的信息仅仅是一个二值决定,即是否存在至少一个定位信号,则该过程代表了不必要的复杂解决方案。本文提出了一种不同的方法来解决二进制检测问题,大大降低了计算复杂度。该方法基于一种新的决策度量来设计两个二元检测器。第一个检测器在加性高斯白噪声的理论假设下工作,并通过接收机工作特性进行评估。第二种方法也考虑了额外的干扰,适用于真实环境。利用接收机前端捕获的信号验证其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind sub-Nyquist GNSS signal detection
A satellite navigation receiver traditionally searches for positioning signals using an acquisition procedure. In situations, in which the required information is only a binary decision whether at least one positioning signal is present or absent, the procedure represents an unnecessarily complex solution. This paper presents a different approach for the binary detection problem with significantly reduced computational complexity. The approach is based on a novel decision metric which is utilized to design two binary detectors. The first detector operates under the theoretical assumption of additive white Gaussian noise and is evaluated by means of Receiver Operating Characteristics. The second one considers also additional interferences and is suitable to operate in a real environment. Its performance is verified using a signal captured by a receiver front-end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1