通过对能源绩效证书的探索性分析,可视化高分辨率能源地图

T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini
{"title":"通过对能源绩效证书的探索性分析,可视化高分辨率能源地图","authors":"T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini","doi":"10.1109/SEST.2019.8849061","DOIUrl":null,"url":null,"abstract":"This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visualising high-resolution energy maps through the exploratory analysis of energy performance certificates\",\"authors\":\"T. Cerquitelli, Evelina Di Corso, Stefano Proto, Alfonso Capozzoli, D. Mazzarelli, Andrea Nasso, Elena Baralis, M. Mellia, Silvia Casagrande, Martina Tamburini\",\"doi\":\"10.1109/SEST.2019.8849061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个新的数据挖掘引擎,名为EXTREMA(都灵高分辨率能源地图的开发),用于自动可视化高分辨率能源地图,从大量epc集合中探索有趣的和人类可读的知识项目。用Python开发的EXTREMA生成地理定位地图,以总结不同空间粒度级别上影响建筑物能源效率的变量之间的主要关系。可视化的知识是通过基于探索性和无监督算法的两级数据分析方法发现的。首先,一种无监督算法将epc划分为具有相似热物理特征的同类建筑组。然后通过有趣的模式对每个群体进行局部特征描述,以简洁地表示每个群体。实验评估在意大利西北部一个主要城市收集的真实数据集上进行,证明了EXTREMA在提取和图形化显示地理位置多元能量地图上的有效性,这是一组可管理的人类可读知识项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualising high-resolution energy maps through the exploratory analysis of energy performance certificates
This paper presents a new data mining engine, named EXTREMA (EXploitation of Turin high Resolution Energy MAps), to automatically visualise high-resolution energy maps exploring interesting and human-readable knowledge items from large collections of EPCs. EXTREMA, developed in Python, generates geo-located maps to summarise the main relationships among variables affecting the energy efficiency of buildings at different spatial granularity levels. The visualised knowledge is discovered through a two-level data analytics methodology based on exploratory and unsupervised algorithms. First an unsupervised algorithm divides EPCs into homogeneous groups of buildings with similar thermo-physical characteristics. Each group is then locally characterised through interesting patterns to concisely represent each group. The experimental evaluation, performed on a real dataset collected in a major Italian city in North-West Italy, demonstrates the effectiveness of EXTREMA in extracting and graphically display on geo-located multivariate energy maps a manageable set of human-readable knowledge items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1