表面形貌对聚苯乙烯疏水性和细菌粘附性的影响

A. J. Mohamad, Xinyao Zhu, Xianping Liu, Wilhelm Pfleging, M. Torge
{"title":"表面形貌对聚苯乙烯疏水性和细菌粘附性的影响","authors":"A. J. Mohamad, Xinyao Zhu, Xianping Liu, Wilhelm Pfleging, M. Torge","doi":"10.1109/3M-NANO.2013.6737421","DOIUrl":null,"url":null,"abstract":"We report the investigation on effect of surface topography (roughness) and hydrophobicity (contact angle measurement) on bacteria adhesion for polystyrene material. The surfaces of polystyrene substrates were patterned using UV-laser radiation with a wavelength of 193 nm at different conditions. Different surface topographies were fabricated and then measured by an optical surface profiler and contact angle measurements. For bacterial adhesion experiments, an assay of Escherichia coli (E.coli) has been developed and used for bacterial adhesion measurements on both as received and the modified polystyrene surfaces. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent DAPI stain. The preliminary results show that laser-assisted modification by using laser ablation can make polystyrene substrates either more hydrophilic (with oxygen) or more hydrophobic (with air). The contact angle can be varied from 37° to 108°. The results on bacterial attachment show that the polystyrene substrates as received have no bacteria attached, indicating a good anti-bacterial performance. The treated substrates show some bacterial attachment and, in particular, the surfaces with high contact angle have much higher numbers of bacterial cells attached. This indicates that such laser-assisted process with air can make polystyrene surfaces more attractive to E. coli bacteria.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"28 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of surface topography on hydrophobicity and bacterial adhesion of polystyrene\",\"authors\":\"A. J. Mohamad, Xinyao Zhu, Xianping Liu, Wilhelm Pfleging, M. Torge\",\"doi\":\"10.1109/3M-NANO.2013.6737421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the investigation on effect of surface topography (roughness) and hydrophobicity (contact angle measurement) on bacteria adhesion for polystyrene material. The surfaces of polystyrene substrates were patterned using UV-laser radiation with a wavelength of 193 nm at different conditions. Different surface topographies were fabricated and then measured by an optical surface profiler and contact angle measurements. For bacterial adhesion experiments, an assay of Escherichia coli (E.coli) has been developed and used for bacterial adhesion measurements on both as received and the modified polystyrene surfaces. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent DAPI stain. The preliminary results show that laser-assisted modification by using laser ablation can make polystyrene substrates either more hydrophilic (with oxygen) or more hydrophobic (with air). The contact angle can be varied from 37° to 108°. The results on bacterial attachment show that the polystyrene substrates as received have no bacteria attached, indicating a good anti-bacterial performance. The treated substrates show some bacterial attachment and, in particular, the surfaces with high contact angle have much higher numbers of bacterial cells attached. This indicates that such laser-assisted process with air can make polystyrene surfaces more attractive to E. coli bacteria.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"28 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了聚苯乙烯材料表面形貌(粗糙度)和疏水性(接触角测量)对细菌粘附的影响。利用波长为193 nm的紫外激光在不同条件下对聚苯乙烯衬底表面进行了图案化处理。制作了不同的表面形貌,然后通过光学表面轮廓仪和接触角测量进行了测量。对于细菌粘附实验,已经开发了一种大肠杆菌(E.coli)的测定方法,并用于在接收到的和改性聚苯乙烯表面上进行细菌粘附测量。该方法是基于对附着的细菌细胞进行核酸结合的绿色荧光DAPI染色。初步结果表明,利用激光烧蚀技术对聚苯乙烯基板进行激光辅助改性,可以使聚苯乙烯基板的亲水性(含氧)增强,疏水性(含空气)增强。接触角可在37°至108°范围内变化。细菌附着结果表明,所得到的聚苯乙烯底物无细菌附着,具有良好的抗菌性能。处理过的底物显示出一些细菌附着,特别是具有高接触角的表面具有更高数量的细菌细胞附着。这表明这种激光辅助空气处理可以使聚苯乙烯表面对大肠杆菌更有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of surface topography on hydrophobicity and bacterial adhesion of polystyrene
We report the investigation on effect of surface topography (roughness) and hydrophobicity (contact angle measurement) on bacteria adhesion for polystyrene material. The surfaces of polystyrene substrates were patterned using UV-laser radiation with a wavelength of 193 nm at different conditions. Different surface topographies were fabricated and then measured by an optical surface profiler and contact angle measurements. For bacterial adhesion experiments, an assay of Escherichia coli (E.coli) has been developed and used for bacterial adhesion measurements on both as received and the modified polystyrene surfaces. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent DAPI stain. The preliminary results show that laser-assisted modification by using laser ablation can make polystyrene substrates either more hydrophilic (with oxygen) or more hydrophobic (with air). The contact angle can be varied from 37° to 108°. The results on bacterial attachment show that the polystyrene substrates as received have no bacteria attached, indicating a good anti-bacterial performance. The treated substrates show some bacterial attachment and, in particular, the surfaces with high contact angle have much higher numbers of bacterial cells attached. This indicates that such laser-assisted process with air can make polystyrene surfaces more attractive to E. coli bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on composite autofocus algorithm for detection system of pipeline robot Ionic current investigation in silicon nanochannels with molecular dynamics simulations Fabrication of a single CuO nanowire-based gas sensor working at room temperature Improving photoelectric conversion efficiency of DSSC using ZnO/ZnP composite nanorods The design and new controller of a 1-DOF precision positioning platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1