从智能电表数据的配电网拓扑和参数的最大似然估计

Lisa Laurent, Jean-Sébastien Brouillon, G. Ferrari-Trecate
{"title":"从智能电表数据的配电网拓扑和参数的最大似然估计","authors":"Lisa Laurent, Jean-Sébastien Brouillon, G. Ferrari-Trecate","doi":"10.1109/GridEdge54130.2023.10102720","DOIUrl":null,"url":null,"abstract":"This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.","PeriodicalId":377998,"journal":{"name":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum likelihood estimation of distribution grid topology and parameters from Smart Meter data\",\"authors\":\"Lisa Laurent, Jean-Sébastien Brouillon, G. Ferrari-Trecate\",\"doi\":\"10.1109/GridEdge54130.2023.10102720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.\",\"PeriodicalId\":377998,\"journal\":{\"name\":\"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GridEdge54130.2023.10102720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GridEdge54130.2023.10102720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了配电网导纳矩阵估计的最大似然估计器(MLE),利用仅从普通的非同步测量设备(智能电表)收集的电压幅度和功率测量。首先,我们提出了一个网格模型,以及现有的基于电压和电流相量测量的最大似然估计。然后,使用一般假设对该问题公式进行无相测量调整。在各种情况下,将这些假设的效果与初始问题进行比较。最后,在一个常用的IEEE基准网络上进行了数值实验,得到了良好的结果。缺少数据会极大地破坏估计方法。在实际情况下,不测量电压相位只会给导纳矩阵估计增加30%的误差。此外,在有无相位的情况下,对测量噪声的灵敏度相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum likelihood estimation of distribution grid topology and parameters from Smart Meter data
This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive approach for primary frequency support by wind turbines based on grid code requirements and turbines limitations Steady State Voltage Regulation Requirements for Grid-Forming Inverter based Power Plant in Microgrid Applications Energy Management of Ultra Fast Charging Stations Parallel Line Resonance Between Interagency Transmission Lines and the Effect on a De-Energized Line with Fixed Shunt Reactance Estimating the Output of Behind the Meter Solar Farms by Breaking Irradiance Data into its Diffuse and Direct Components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1