{"title":"精确的涡轮频率调谐和共享资源优化节能云原生工作负载","authors":"P. Veitch, Chris MacNamara, John J. Browne","doi":"10.1109/NetSoft57336.2023.10175455","DOIUrl":null,"url":null,"abstract":"As an increasing number of software-oriented telecoms workloads are run as Containerised Network Functions (CNFs) on cloud native virtualised infrastructure, performance tuning is vital. When compute infrastructure is distributed towards the edge of networks, efficient use of scarce resources is key meaning the available resources must be fine-tuned to achieve deterministic performance; another vital factor is the energy consumption of such compute which should be carefully managed. In the latest generation of Intel x86 servers, a new capability called Speed Select Technology Turbo Frequency (SST-TF) is available, enabling more targeted allocation of turbo frequency settings to specific CPU cores. This has significant potential in multi-tenant edge compute environments increasingly seen in 5G deployments and is likely to be a key building block for 6G. This paper evaluates the potential application of SST-TF for competing CNFs – a mix of high and low priority workloads - in a multi-tenant edge compute scenario. The targeted application of SST-TF is shown to yield performance benefits compared to the legacy turbo frequency capability in earlier generations of processor (by up to 35%), and when combined with other intelligent resource management tooling can also achieve a net reduction in server power consumption (of 1.7%).","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Turbo Frequency Tuning and Shared Resource Optimisation for Energy-Efficient Cloud Native Workloads\",\"authors\":\"P. Veitch, Chris MacNamara, John J. Browne\",\"doi\":\"10.1109/NetSoft57336.2023.10175455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an increasing number of software-oriented telecoms workloads are run as Containerised Network Functions (CNFs) on cloud native virtualised infrastructure, performance tuning is vital. When compute infrastructure is distributed towards the edge of networks, efficient use of scarce resources is key meaning the available resources must be fine-tuned to achieve deterministic performance; another vital factor is the energy consumption of such compute which should be carefully managed. In the latest generation of Intel x86 servers, a new capability called Speed Select Technology Turbo Frequency (SST-TF) is available, enabling more targeted allocation of turbo frequency settings to specific CPU cores. This has significant potential in multi-tenant edge compute environments increasingly seen in 5G deployments and is likely to be a key building block for 6G. This paper evaluates the potential application of SST-TF for competing CNFs – a mix of high and low priority workloads - in a multi-tenant edge compute scenario. The targeted application of SST-TF is shown to yield performance benefits compared to the legacy turbo frequency capability in earlier generations of processor (by up to 35%), and when combined with other intelligent resource management tooling can also achieve a net reduction in server power consumption (of 1.7%).\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
随着越来越多的面向软件的电信工作负载作为容器化网络功能(cnf)在云原生虚拟化基础设施上运行,性能调优变得至关重要。当计算基础设施向网络边缘分布时,有效利用稀缺资源是关键,这意味着必须对可用资源进行微调以实现确定性性能;另一个至关重要的因素是这种计算的能量消耗,应该仔细管理。在最新一代的Intel x86服务器中,提供了一种名为Speed Select Technology Turbo Frequency (SST-TF)的新功能,可以更有针对性地将Turbo频率设置分配给特定的CPU内核。这在5G部署中越来越多地看到的多租户边缘计算环境中具有巨大潜力,并且可能成为6G的关键构建块。本文评估了SST-TF在多租户边缘计算场景中用于竞争cnf(高优先级和低优先级工作负载的混合)的潜在应用。与前几代处理器的传统涡轮频率能力相比,SST-TF的目标应用显示出性能优势(高达35%),并且当与其他智能资源管理工具结合使用时,还可以实现服务器功耗的净降低(1.7%)。
Precise Turbo Frequency Tuning and Shared Resource Optimisation for Energy-Efficient Cloud Native Workloads
As an increasing number of software-oriented telecoms workloads are run as Containerised Network Functions (CNFs) on cloud native virtualised infrastructure, performance tuning is vital. When compute infrastructure is distributed towards the edge of networks, efficient use of scarce resources is key meaning the available resources must be fine-tuned to achieve deterministic performance; another vital factor is the energy consumption of such compute which should be carefully managed. In the latest generation of Intel x86 servers, a new capability called Speed Select Technology Turbo Frequency (SST-TF) is available, enabling more targeted allocation of turbo frequency settings to specific CPU cores. This has significant potential in multi-tenant edge compute environments increasingly seen in 5G deployments and is likely to be a key building block for 6G. This paper evaluates the potential application of SST-TF for competing CNFs – a mix of high and low priority workloads - in a multi-tenant edge compute scenario. The targeted application of SST-TF is shown to yield performance benefits compared to the legacy turbo frequency capability in earlier generations of processor (by up to 35%), and when combined with other intelligent resource management tooling can also achieve a net reduction in server power consumption (of 1.7%).