基于天窗偏振的地面车辆导航

Guillaume Courtier, Pierre-Jean Lapray, Ronan Adam, S. Changey, Jean-Philippe Lauffenburger
{"title":"基于天窗偏振的地面车辆导航","authors":"Guillaume Courtier, Pierre-Jean Lapray, Ronan Adam, S. Changey, Jean-Philippe Lauffenburger","doi":"10.1109/PLANS53410.2023.10140044","DOIUrl":null,"url":null,"abstract":"Autonomous or unmanned ground vehicles can take advantage of camera-based navigation systems. These navigation systems mainly rely on standard radiometric cameras. The use of polarization information, such as captured by a polarization filter array camera, is a potential extension to capture multimodal information efficiently. In this communication, we propose a navigation method that relies exclusively on Stokes images reconstructed from polarization camera data. For this purpose, an image processing pipeline is employed to estimate the heading of a vehicle. To assess the method, an acquisition card has been built and coupled with two moving platforms: a rotary stage and a moving ground vehicle. The results show that, in a dynamic car experiment, the root mean square error of the orientation is 4.29° as compared to a Global Positioning System/Inertial Navigation System.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ground Vehicle Navigation Based on the Skylight Polarization\",\"authors\":\"Guillaume Courtier, Pierre-Jean Lapray, Ronan Adam, S. Changey, Jean-Philippe Lauffenburger\",\"doi\":\"10.1109/PLANS53410.2023.10140044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous or unmanned ground vehicles can take advantage of camera-based navigation systems. These navigation systems mainly rely on standard radiometric cameras. The use of polarization information, such as captured by a polarization filter array camera, is a potential extension to capture multimodal information efficiently. In this communication, we propose a navigation method that relies exclusively on Stokes images reconstructed from polarization camera data. For this purpose, an image processing pipeline is employed to estimate the heading of a vehicle. To assess the method, an acquisition card has been built and coupled with two moving platforms: a rotary stage and a moving ground vehicle. The results show that, in a dynamic car experiment, the root mean square error of the orientation is 4.29° as compared to a Global Positioning System/Inertial Navigation System.\",\"PeriodicalId\":344794,\"journal\":{\"name\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS53410.2023.10140044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS53410.2023.10140044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自主或无人驾驶的地面车辆可以利用基于摄像头的导航系统。这些导航系统主要依靠标准的辐射照相机。利用偏振信息,例如偏振滤波阵列相机捕获的偏振信息,是有效捕获多模态信息的潜在扩展。在本文中,我们提出了一种完全依赖于偏振相机数据重建的Stokes图像的导航方法。为此,采用图像处理流水线来估计车辆的航向。为了评估该方法,建立了一个采集卡,并与两个移动平台相结合:一个旋转舞台和一个移动地面车辆。结果表明,在汽车动态实验中,与全球定位系统/惯性导航系统相比,定位的均方根误差为4.29°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ground Vehicle Navigation Based on the Skylight Polarization
Autonomous or unmanned ground vehicles can take advantage of camera-based navigation systems. These navigation systems mainly rely on standard radiometric cameras. The use of polarization information, such as captured by a polarization filter array camera, is a potential extension to capture multimodal information efficiently. In this communication, we propose a navigation method that relies exclusively on Stokes images reconstructed from polarization camera data. For this purpose, an image processing pipeline is employed to estimate the heading of a vehicle. To assess the method, an acquisition card has been built and coupled with two moving platforms: a rotary stage and a moving ground vehicle. The results show that, in a dynamic car experiment, the root mean square error of the orientation is 4.29° as compared to a Global Positioning System/Inertial Navigation System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations using LEO-PNT systems: A Brief Survey Signal Mode Transition Detection in Starlink LEO Satellite Downlink Signals Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking Prediction of Ground Wave Propagation Delays in Terrestrial Radio Navigation Systems Based on Soil Texture Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1