用先行指标预测GDP: VAR方法

R. Kahan
{"title":"用先行指标预测GDP: VAR方法","authors":"R. Kahan","doi":"10.2139/ssrn.2606393","DOIUrl":null,"url":null,"abstract":"The Conference Board’s Leading Economic Indicators Index suffers from construction flaws, which reduce its predictive power as well as one’s ability to interpret its signals. This paper develops a vector autoregression model to address these problems. The model’s out-of-sample GDP forecasts, using revised data, are found to outperform other private-sector forecasters on average over the period considered.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting GDP with the Leading Indicators: A VAR Approach\",\"authors\":\"R. Kahan\",\"doi\":\"10.2139/ssrn.2606393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Conference Board’s Leading Economic Indicators Index suffers from construction flaws, which reduce its predictive power as well as one’s ability to interpret its signals. This paper develops a vector autoregression model to address these problems. The model’s out-of-sample GDP forecasts, using revised data, are found to outperform other private-sector forecasters on average over the period considered.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2606393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2606393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

世界大型企业联合会(Conference Board)的领先经济指标指数(Leading Economic Indicators Index)存在结构性缺陷,这降低了它的预测能力,也降低了人们解读其信号的能力。本文开发了一个向量自回归模型来解决这些问题。该模型的样本外GDP预测(使用修订后的数据)在考虑的时间段内平均表现优于其他私营部门预测者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting GDP with the Leading Indicators: A VAR Approach
The Conference Board’s Leading Economic Indicators Index suffers from construction flaws, which reduce its predictive power as well as one’s ability to interpret its signals. This paper develops a vector autoregression model to address these problems. The model’s out-of-sample GDP forecasts, using revised data, are found to outperform other private-sector forecasters on average over the period considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1