H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin, A. Belahcen
{"title":"轴向同步磁耦合建模与选择性激光熔化打印","authors":"H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin, A. Belahcen","doi":"10.1109/RTUCON48111.2019.8982344","DOIUrl":null,"url":null,"abstract":"Today, dedicated metal 3D printing platforms can produce industrial grade homo-material metal components, promoting the fabrication of soft magnetic components for electrical machines with three-dimensionally optimized topologies. The printed components have been shown to exhibit excellent DC magnetic properties, indicating the maturity of the technology for applications incorporating quasi-static magnetic fields, such as magnetic couplings or rotors of synchronous machines. In the paper, finite element modeling of a synchronous reluctance magnetic coupling is investigated. Previously 3D printed and researched material of electrical steel with 6.5% added silicon content with selective laser melting is adopted in the model, alongside the printing limitations of the printing system. Commercial finite element modeling software COMSOL Multiphysics is employed for modeling. Printing of the modeled coupling was currently unsuccessful due to unoptimized printing parameters.","PeriodicalId":317349,"journal":{"name":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"32 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Axial Synchronous Magnetic Coupling Modeling and Printing with Selective Laser Melting\",\"authors\":\"H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin, A. Belahcen\",\"doi\":\"10.1109/RTUCON48111.2019.8982344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, dedicated metal 3D printing platforms can produce industrial grade homo-material metal components, promoting the fabrication of soft magnetic components for electrical machines with three-dimensionally optimized topologies. The printed components have been shown to exhibit excellent DC magnetic properties, indicating the maturity of the technology for applications incorporating quasi-static magnetic fields, such as magnetic couplings or rotors of synchronous machines. In the paper, finite element modeling of a synchronous reluctance magnetic coupling is investigated. Previously 3D printed and researched material of electrical steel with 6.5% added silicon content with selective laser melting is adopted in the model, alongside the printing limitations of the printing system. Commercial finite element modeling software COMSOL Multiphysics is employed for modeling. Printing of the modeled coupling was currently unsuccessful due to unoptimized printing parameters.\",\"PeriodicalId\":317349,\"journal\":{\"name\":\"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":\"32 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON48111.2019.8982344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON48111.2019.8982344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Axial Synchronous Magnetic Coupling Modeling and Printing with Selective Laser Melting
Today, dedicated metal 3D printing platforms can produce industrial grade homo-material metal components, promoting the fabrication of soft magnetic components for electrical machines with three-dimensionally optimized topologies. The printed components have been shown to exhibit excellent DC magnetic properties, indicating the maturity of the technology for applications incorporating quasi-static magnetic fields, such as magnetic couplings or rotors of synchronous machines. In the paper, finite element modeling of a synchronous reluctance magnetic coupling is investigated. Previously 3D printed and researched material of electrical steel with 6.5% added silicon content with selective laser melting is adopted in the model, alongside the printing limitations of the printing system. Commercial finite element modeling software COMSOL Multiphysics is employed for modeling. Printing of the modeled coupling was currently unsuccessful due to unoptimized printing parameters.