后张预制榫卯连接挡土块的试验研究

Wenpeng Wu, X. Ye, Yongjiao Yao, Lifeng Li
{"title":"后张预制榫卯连接挡土块的试验研究","authors":"Wenpeng Wu, X. Ye, Yongjiao Yao, Lifeng Li","doi":"10.2749/nanjing.2022.0470","DOIUrl":null,"url":null,"abstract":"Conventional sacrificial shear keys in both bridge abutments and pier cap beams have been proved to be helpful to limit the over displacement of the superstructure under the designed earthquake event. However, the advantage of the sacrificial shear keys depends on the severe damage of the shear key itself or the stem wall, which would completely break off the mechanical connection between one concrete component and another. In addition, it is time-consuming and costly to repair and reinforce the conventional shear keys once it is severely damaged in huge earthquake event. Therefore, this paper proposed a novel post-tensioned prefabricated concrete retaining block with mortise-tenon joint. Four retaining block specimens were designed and tested to study its anti- seismic effectiveness and basic mechanical properties. The influence of the structural material and forms on seismic damage mode of the proposed retaining blocks were investigated.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of the Post-Tensioned Prefabricated Retaining Blocks with Mortise-Tenon Joint\",\"authors\":\"Wenpeng Wu, X. Ye, Yongjiao Yao, Lifeng Li\",\"doi\":\"10.2749/nanjing.2022.0470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional sacrificial shear keys in both bridge abutments and pier cap beams have been proved to be helpful to limit the over displacement of the superstructure under the designed earthquake event. However, the advantage of the sacrificial shear keys depends on the severe damage of the shear key itself or the stem wall, which would completely break off the mechanical connection between one concrete component and another. In addition, it is time-consuming and costly to repair and reinforce the conventional shear keys once it is severely damaged in huge earthquake event. Therefore, this paper proposed a novel post-tensioned prefabricated concrete retaining block with mortise-tenon joint. Four retaining block specimens were designed and tested to study its anti- seismic effectiveness and basic mechanical properties. The influence of the structural material and forms on seismic damage mode of the proposed retaining blocks were investigated.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在设计地震作用下,在桥台和承台梁上设置传统的牺牲剪力键有助于限制上部结构的超位移。然而,牺牲剪切键的优势在于剪切键本身或干墙的严重破坏,这将完全切断一个混凝土构件与另一个混凝土构件之间的机械连接。此外,传统的剪力键一旦在大地震事件中遭到严重破坏,修复和加固既耗时又昂贵。为此,本文提出了一种新型的后张预应力预应力混凝土榫卯连接挡土块。设计并试验了4个挡土块试件,研究了挡土块的抗震性能和基本力学性能。研究了挡土块结构材料和形式对挡土块震害模式的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study of the Post-Tensioned Prefabricated Retaining Blocks with Mortise-Tenon Joint
Conventional sacrificial shear keys in both bridge abutments and pier cap beams have been proved to be helpful to limit the over displacement of the superstructure under the designed earthquake event. However, the advantage of the sacrificial shear keys depends on the severe damage of the shear key itself or the stem wall, which would completely break off the mechanical connection between one concrete component and another. In addition, it is time-consuming and costly to repair and reinforce the conventional shear keys once it is severely damaged in huge earthquake event. Therefore, this paper proposed a novel post-tensioned prefabricated concrete retaining block with mortise-tenon joint. Four retaining block specimens were designed and tested to study its anti- seismic effectiveness and basic mechanical properties. The influence of the structural material and forms on seismic damage mode of the proposed retaining blocks were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FE Modeling of the Interfacial Behaviour of Precast Multi-box Girder The Behavior of Long-span Suspended Footbridge Under Wind Load The Durability and SHM System of Hong Kong-Zhuhai-Macao Bridge Study on the Influence of Bridge Expansion Joints on Vehicle-Track- Bridge System Numerical Examination in Bridge Responses due to Fracture of Truss Member in a Steel Truss Bridge under Vehicle Loadings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1