基于粉末涂层的绝缘层对电力驱动中铜填充系数的理论好处

B. Hofmann, B. Bickel, P.A.B. Bräuer, M. Leder, J. Franke
{"title":"基于粉末涂层的绝缘层对电力驱动中铜填充系数的理论好处","authors":"B. Hofmann, B. Bickel, P.A.B. Bräuer, M. Leder, J. Franke","doi":"10.1109/EDPC.2016.7851330","DOIUrl":null,"url":null,"abstract":"Power density is a crucial requirement factor regarding high power traction drives for automotive application. As battery capacity is one of the most limiting factors regarding range of current electric vehicles, output efficiency in relation to package size is one of several levers to extend existing limitations. Within electric drives, efficiency is linked to the copper mass being implemented into the active components. The presented paper evaluates the possibility of expanding copper fill factor by the use of higher grade - and thus thinner - electric insulation materials. By using powder coatings with breakdown voltages superior to existing NMN and NKN laminates usually used as groundwall insulation system in electric drives, insulation layers can be reduced in size leaving more room for magnet wires. With regard to existing stator layouts and topologies, multiple slot cross sections are evaluated. Results show an increase of the electric copper fill factor by up to 13%, which leads to higher output or the possibility to reduce package size and mass without sacrificing output power.","PeriodicalId":121418,"journal":{"name":"2016 6th International Electric Drives Production Conference (EDPC)","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Theoretical benefits of powder-coating based insulation layers regarding copper fill factor in electric drives\",\"authors\":\"B. Hofmann, B. Bickel, P.A.B. Bräuer, M. Leder, J. Franke\",\"doi\":\"10.1109/EDPC.2016.7851330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power density is a crucial requirement factor regarding high power traction drives for automotive application. As battery capacity is one of the most limiting factors regarding range of current electric vehicles, output efficiency in relation to package size is one of several levers to extend existing limitations. Within electric drives, efficiency is linked to the copper mass being implemented into the active components. The presented paper evaluates the possibility of expanding copper fill factor by the use of higher grade - and thus thinner - electric insulation materials. By using powder coatings with breakdown voltages superior to existing NMN and NKN laminates usually used as groundwall insulation system in electric drives, insulation layers can be reduced in size leaving more room for magnet wires. With regard to existing stator layouts and topologies, multiple slot cross sections are evaluated. Results show an increase of the electric copper fill factor by up to 13%, which leads to higher output or the possibility to reduce package size and mass without sacrificing output power.\",\"PeriodicalId\":121418,\"journal\":{\"name\":\"2016 6th International Electric Drives Production Conference (EDPC)\",\"volume\":\"323 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Electric Drives Production Conference (EDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDPC.2016.7851330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Electric Drives Production Conference (EDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPC.2016.7851330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

功率密度是汽车用大功率牵引传动的关键要求因素。由于电池容量是当前电动汽车续航里程的最大限制因素之一,因此与封装尺寸相关的输出效率是扩大现有限制的几个杠杆之一。在电力驱动中,效率与被实施到有源组件中的铜质量有关。本文评估了通过使用更高等级的——因而更薄的——电绝缘材料来扩大铜填充系数的可能性。通过使用击穿电压优于现有的NMN和NKN层压板的粉末涂料,通常用于电力驱动的接地墙绝缘系统,绝缘层的尺寸可以减小,为磁铁线留下更多的空间。对于现有的定子布局和拓扑结构,对多个槽截面进行了评估。结果表明,电铜填充系数增加了13%,这导致更高的输出,或者在不牺牲输出功率的情况下减小封装尺寸和质量的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical benefits of powder-coating based insulation layers regarding copper fill factor in electric drives
Power density is a crucial requirement factor regarding high power traction drives for automotive application. As battery capacity is one of the most limiting factors regarding range of current electric vehicles, output efficiency in relation to package size is one of several levers to extend existing limitations. Within electric drives, efficiency is linked to the copper mass being implemented into the active components. The presented paper evaluates the possibility of expanding copper fill factor by the use of higher grade - and thus thinner - electric insulation materials. By using powder coatings with breakdown voltages superior to existing NMN and NKN laminates usually used as groundwall insulation system in electric drives, insulation layers can be reduced in size leaving more room for magnet wires. With regard to existing stator layouts and topologies, multiple slot cross sections are evaluated. Results show an increase of the electric copper fill factor by up to 13%, which leads to higher output or the possibility to reduce package size and mass without sacrificing output power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of axial mechanical stress on the magnetic properties of non-oriented electrical steel Holistic production analysis for actuator manufacturing using data mining Sensitivity analysis on tolerance induced torque fluctuation of a synchronous machine Influences of separation and joining processes on single tooth laminated stacks Theoretical benefits of powder-coating based insulation layers regarding copper fill factor in electric drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1