基于MI-SSVEP的混合脑机接口用于潜在的上肢神经康复:一项初步研究

Ciarán McGeady, A. Vučković, S. Puthusserypady
{"title":"基于MI-SSVEP的混合脑机接口用于潜在的上肢神经康复:一项初步研究","authors":"Ciarán McGeady, A. Vučković, S. Puthusserypady","doi":"10.1109/IWW-BCI.2019.8737333","DOIUrl":null,"url":null,"abstract":"This pilot study implements a hybrid BCI system in an effort to deduce the effects of measuring more than one brain signal in a motor imagery (MI) task. In addition to sensorimotor rhythms (SMRs), a steady state visual evoked potential (SSVEP) was introduced to acquire additional information relating to user intention. A common spatial pattern (CSP) filter followed by a support vector machine (SVM) classifier were used to distinguish between MI and the resting state. The power spectral density (PSD) was used to classify the SSVEP. Results from online simulations of EEG data collected from 10 able-bodied participants showed that the hybrid BCI’s performance achieved a classification accuracy of 77.3±8.2%, with an SSVEP classification accuracy of 94.4±3.5%, and MI classification accuracy of 80.9±8.1%, an improvement upon purely MI-based multi-class BCI paradigms.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study\",\"authors\":\"Ciarán McGeady, A. Vučković, S. Puthusserypady\",\"doi\":\"10.1109/IWW-BCI.2019.8737333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This pilot study implements a hybrid BCI system in an effort to deduce the effects of measuring more than one brain signal in a motor imagery (MI) task. In addition to sensorimotor rhythms (SMRs), a steady state visual evoked potential (SSVEP) was introduced to acquire additional information relating to user intention. A common spatial pattern (CSP) filter followed by a support vector machine (SVM) classifier were used to distinguish between MI and the resting state. The power spectral density (PSD) was used to classify the SSVEP. Results from online simulations of EEG data collected from 10 able-bodied participants showed that the hybrid BCI’s performance achieved a classification accuracy of 77.3±8.2%, with an SSVEP classification accuracy of 94.4±3.5%, and MI classification accuracy of 80.9±8.1%, an improvement upon purely MI-based multi-class BCI paradigms.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"463 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本试点研究实现了一个混合脑机接口系统,以努力推断在运动想象(MI)任务中测量多个脑信号的影响。除了感觉运动节律(SMRs)外,稳态视觉诱发电位(SSVEP)被引入以获取与用户意图相关的额外信息。使用公共空间模式(CSP)滤波器和支持向量机(SVM)分类器来区分MI和静息状态。采用功率谱密度(PSD)对SSVEP进行分类。对10名健全参与者的脑电数据进行在线仿真,结果表明,混合脑机接口的分类准确率为77.3±8.2%,SSVEP分类准确率为94.4±3.5%,MI分类准确率为80.9±8.1%,比单纯基于MI的多类脑机接口有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study
This pilot study implements a hybrid BCI system in an effort to deduce the effects of measuring more than one brain signal in a motor imagery (MI) task. In addition to sensorimotor rhythms (SMRs), a steady state visual evoked potential (SSVEP) was introduced to acquire additional information relating to user intention. A common spatial pattern (CSP) filter followed by a support vector machine (SVM) classifier were used to distinguish between MI and the resting state. The power spectral density (PSD) was used to classify the SSVEP. Results from online simulations of EEG data collected from 10 able-bodied participants showed that the hybrid BCI’s performance achieved a classification accuracy of 77.3±8.2%, with an SSVEP classification accuracy of 94.4±3.5%, and MI classification accuracy of 80.9±8.1%, an improvement upon purely MI-based multi-class BCI paradigms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biometrics Based on Single-Trial EEG The Effect of a Binaural Beat Combined with Autonomous Sensory Meridian Response Triggers on Brainwave Entrainment Estimation of speed and direction of arm movements from M1 activity using a nonlinear neural decoder A Hybrid MI-SSVEP based Brain Computer Interface for Potential Upper Limb Neurorehabilitation: A Pilot Study Recurrent convolutional neural network model based on temporal and spatial feature for motor imagery classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1