{"title":"CoMo/Al2O3-MgO负载型催化剂加氢脱硫活性的提高及操作工艺的优化","authors":"X. Zheng, Y. Yue","doi":"10.3808/jeil.202200085","DOIUrl":null,"url":null,"abstract":"Hydrodesulfurization (HDS) plays a vital role in the production of clean fuels when more stringent environmental legislation forces the sulfur content in fuels to an ultra-low level. There are two alternative approaches for producing ultra-low sulfur diesel (ULSD) in a cost-effective way, including the activity improvement of HDS catalysts and the optimization of the operating conditions in HDS reactions. In this study, the activity improvement of HDS catalysts was first examined, and then the optimization of operational conditions was further explored to gain the ULSD in a cost-effective way. In detail, the catalysts were improved through optimizing the ratio between active metal (Mo) and promoter (Co) based on the MgO-Al2O3 as support. Precursors of the improved oxide catalysts and sulfide catalysts were characterized by various techniques, and the catalytic performances were further evaluated in the hydrodesulfurization of dibenzothiophene. Catalysts with the best catalytic performance were chosen to optimize the reaction conditions. Results show that the optimal amounts of catalysts were 4 wt.% of MoO3 and combined with 2 wt.% of CoO. Moreover, the optimal reaction conditions were reaction temperature of 240 °C, total reaction pressure of 4.0 MPa, the hydrogen-to-oil volume ratio of 300, and LHSV of 2.0 h−1. Under the optimal reaction condition, the desulfurization rate could reach to 99.8%.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoMo/Al2O3-MgO Supported Catalysts: Improvement of Hydrodesulfurization Activity and Optimization of Operational Processing\",\"authors\":\"X. Zheng, Y. Yue\",\"doi\":\"10.3808/jeil.202200085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodesulfurization (HDS) plays a vital role in the production of clean fuels when more stringent environmental legislation forces the sulfur content in fuels to an ultra-low level. There are two alternative approaches for producing ultra-low sulfur diesel (ULSD) in a cost-effective way, including the activity improvement of HDS catalysts and the optimization of the operating conditions in HDS reactions. In this study, the activity improvement of HDS catalysts was first examined, and then the optimization of operational conditions was further explored to gain the ULSD in a cost-effective way. In detail, the catalysts were improved through optimizing the ratio between active metal (Mo) and promoter (Co) based on the MgO-Al2O3 as support. Precursors of the improved oxide catalysts and sulfide catalysts were characterized by various techniques, and the catalytic performances were further evaluated in the hydrodesulfurization of dibenzothiophene. Catalysts with the best catalytic performance were chosen to optimize the reaction conditions. Results show that the optimal amounts of catalysts were 4 wt.% of MoO3 and combined with 2 wt.% of CoO. Moreover, the optimal reaction conditions were reaction temperature of 240 °C, total reaction pressure of 4.0 MPa, the hydrogen-to-oil volume ratio of 300, and LHSV of 2.0 h−1. Under the optimal reaction condition, the desulfurization rate could reach to 99.8%.\",\"PeriodicalId\":143718,\"journal\":{\"name\":\"Journal of Environmental Informatics Letters\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3808/jeil.202200085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202200085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CoMo/Al2O3-MgO Supported Catalysts: Improvement of Hydrodesulfurization Activity and Optimization of Operational Processing
Hydrodesulfurization (HDS) plays a vital role in the production of clean fuels when more stringent environmental legislation forces the sulfur content in fuels to an ultra-low level. There are two alternative approaches for producing ultra-low sulfur diesel (ULSD) in a cost-effective way, including the activity improvement of HDS catalysts and the optimization of the operating conditions in HDS reactions. In this study, the activity improvement of HDS catalysts was first examined, and then the optimization of operational conditions was further explored to gain the ULSD in a cost-effective way. In detail, the catalysts were improved through optimizing the ratio between active metal (Mo) and promoter (Co) based on the MgO-Al2O3 as support. Precursors of the improved oxide catalysts and sulfide catalysts were characterized by various techniques, and the catalytic performances were further evaluated in the hydrodesulfurization of dibenzothiophene. Catalysts with the best catalytic performance were chosen to optimize the reaction conditions. Results show that the optimal amounts of catalysts were 4 wt.% of MoO3 and combined with 2 wt.% of CoO. Moreover, the optimal reaction conditions were reaction temperature of 240 °C, total reaction pressure of 4.0 MPa, the hydrogen-to-oil volume ratio of 300, and LHSV of 2.0 h−1. Under the optimal reaction condition, the desulfurization rate could reach to 99.8%.