我们到了吗?推荐系统的训练时间估计

I. Paun, Yashar Moshfeghi, Nikos Ntarmos
{"title":"我们到了吗?推荐系统的训练时间估计","authors":"I. Paun, Yashar Moshfeghi, Nikos Ntarmos","doi":"10.1145/3437984.3458832","DOIUrl":null,"url":null,"abstract":"Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.","PeriodicalId":269840,"journal":{"name":"Proceedings of the 1st Workshop on Machine Learning and Systems","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Are we there yet? Estimating Training Time for Recommendation Systems\",\"authors\":\"I. Paun, Yashar Moshfeghi, Nikos Ntarmos\",\"doi\":\"10.1145/3437984.3458832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.\",\"PeriodicalId\":269840,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437984.3458832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437984.3458832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统(RS)是现代商业平台的关键组成部分,基于协同过滤(CF)的RSs是其核心。长期以来,相关研究一直关注于衡量和提高此类CF系统的有效性,但遗憾的是,它们的效率——特别是在耗时和消耗资源的训练阶段——几乎没有受到关注。这项工作是解决这一差距的第一步。为此,我们首先对一些非常流行的基于cf的RSs的训练阶段的计算复杂性进行了系统的研究,包括基于矩阵分解、k近邻、共聚类和斜率为1的方案的方法。在此基础上,我们建立了一个简单而有效的预测器,在给定数据集的小样本的情况下,能够预测整个数据集的训练时间。我们的系统实验评估表明,我们的方法在相当大的范围内优于最先进的回归方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are we there yet? Estimating Training Time for Recommendation Systems
Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Mitigating Device Heterogeneity in Federated Learning via Adaptive Model Quantization Queen Jane Approximately: Enabling Efficient Neural Network Inference with Context-Adaptivity Are we there yet? Estimating Training Time for Recommendation Systems Predicting CPU usage for proactive autoscaling Towards Optimal Configuration of Microservices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1