{"title":"我们到了吗?推荐系统的训练时间估计","authors":"I. Paun, Yashar Moshfeghi, Nikos Ntarmos","doi":"10.1145/3437984.3458832","DOIUrl":null,"url":null,"abstract":"Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.","PeriodicalId":269840,"journal":{"name":"Proceedings of the 1st Workshop on Machine Learning and Systems","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Are we there yet? Estimating Training Time for Recommendation Systems\",\"authors\":\"I. Paun, Yashar Moshfeghi, Nikos Ntarmos\",\"doi\":\"10.1145/3437984.3458832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.\",\"PeriodicalId\":269840,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Machine Learning and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437984.3458832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437984.3458832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Are we there yet? Estimating Training Time for Recommendation Systems
Recommendation systems (RS) are a key component of modern commercial platforms, with Collaborative Filtering (CF) based RSs being the centrepiece. Relevant research has long focused on measuring and improving the effectiveness of such CF systems, but alas their efficiency - especially with regards to their time- and resource-consuming training phase - has received little to no attention. This work is a first step in the direction of addressing this gap. To do so, we first perform a methodical study of the computational complexity of the training phase for a number of highly popular CF-based RSs, including approaches based on matrix factorisation, k-nearest neighbours, co-clustering, and slope one schemes. Based on this, we then build a simple yet effective predictor that, given a small sample of a dataset, is able to predict training times over the complete dataset. Our systematic experimental evaluation shows that our approach outperforms state-of-the-art regression schemes by a considerable margin.