不专心就是错位!自适应目标检测器的残差自关注特征对齐

Vaishnavi Khindkar, Chetan Arora, V. Balasubramanian, A. Subramanian, Rohit Saluja, C.V. Jawahar
{"title":"不专心就是错位!自适应目标检测器的残差自关注特征对齐","authors":"Vaishnavi Khindkar, Chetan Arora, V. Balasubramanian, A. Subramanian, Rohit Saluja, C.V. Jawahar","doi":"10.1109/WACV51458.2022.00045","DOIUrl":null,"url":null,"abstract":"Advancements in adaptive object detection can lead to tremendous improvements in applications like autonomous navigation, as they alleviate the distributional shifts along the detection pipeline. Prior works adopt adversarial learning to align image features at global and local levels, yet the instance-specific misalignment persists. Also, adaptive object detection remains challenging due to visual diversity in background scenes and intricate combinations of objects. Motivated by structural importance, we aim to attend prominent instance-specific regions, overcoming the feature misalignment issue. We propose a novel resIduaL seLf-attentive featUre alignMEnt (ILLUME) method for adaptive object detection. ILLUME comprises Self-Attention Feature Map (SAFM) module that enhances structural attention to object-related regions and thereby generates domain invariant features. Our approach significantly reduces the domain distance with the improved feature alignment of the instances. Qualitative results demonstrate the ability of ILLUME to attend important object instances required for alignment. Experimental results on several benchmark datasets show that our method outperforms the existing state-of-the-art approaches.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"To miss-attend is to misalign! Residual Self-Attentive Feature Alignment for Adapting Object Detectors\",\"authors\":\"Vaishnavi Khindkar, Chetan Arora, V. Balasubramanian, A. Subramanian, Rohit Saluja, C.V. Jawahar\",\"doi\":\"10.1109/WACV51458.2022.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in adaptive object detection can lead to tremendous improvements in applications like autonomous navigation, as they alleviate the distributional shifts along the detection pipeline. Prior works adopt adversarial learning to align image features at global and local levels, yet the instance-specific misalignment persists. Also, adaptive object detection remains challenging due to visual diversity in background scenes and intricate combinations of objects. Motivated by structural importance, we aim to attend prominent instance-specific regions, overcoming the feature misalignment issue. We propose a novel resIduaL seLf-attentive featUre alignMEnt (ILLUME) method for adaptive object detection. ILLUME comprises Self-Attention Feature Map (SAFM) module that enhances structural attention to object-related regions and thereby generates domain invariant features. Our approach significantly reduces the domain distance with the improved feature alignment of the instances. Qualitative results demonstrate the ability of ILLUME to attend important object instances required for alignment. Experimental results on several benchmark datasets show that our method outperforms the existing state-of-the-art approaches.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"22 6S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自适应目标检测的进步可以极大地改善自动导航等应用,因为它们减轻了检测管道沿线的分布变化。先前的工作采用对抗学习在全局和局部级别对齐图像特征,但特定实例的不对齐仍然存在。此外,由于背景场景的视觉多样性和物体的复杂组合,自适应目标检测仍然具有挑战性。在结构重要性的激励下,我们的目标是关注突出的实例特定区域,克服特征不对齐问题。提出了一种新的残差自关注特征对齐(ILLUME)自适应目标检测方法。ILLUME包含自关注特征映射(SAFM)模块,该模块增强了对对象相关区域的结构关注,从而生成域不变特征。我们的方法通过改进实例的特征对齐,显著减少了域距离。定性结果证明了ILLUME能够参加对齐所需的重要对象实例。在几个基准数据集上的实验结果表明,我们的方法优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To miss-attend is to misalign! Residual Self-Attentive Feature Alignment for Adapting Object Detectors
Advancements in adaptive object detection can lead to tremendous improvements in applications like autonomous navigation, as they alleviate the distributional shifts along the detection pipeline. Prior works adopt adversarial learning to align image features at global and local levels, yet the instance-specific misalignment persists. Also, adaptive object detection remains challenging due to visual diversity in background scenes and intricate combinations of objects. Motivated by structural importance, we aim to attend prominent instance-specific regions, overcoming the feature misalignment issue. We propose a novel resIduaL seLf-attentive featUre alignMEnt (ILLUME) method for adaptive object detection. ILLUME comprises Self-Attention Feature Map (SAFM) module that enhances structural attention to object-related regions and thereby generates domain invariant features. Our approach significantly reduces the domain distance with the improved feature alignment of the instances. Qualitative results demonstrate the ability of ILLUME to attend important object instances required for alignment. Experimental results on several benchmark datasets show that our method outperforms the existing state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1